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A B S T R A C T

Context: The current technology revolution, which places the highest value on people’s welfare, is frequently
seen as being mainly supported by Internet of Things (IoT) technologies. IoT is regarded as a powerful multi-
layered network of systems that integrates several heterogeneous, independently networked (sub-)systems
working together to achieve a shared purpose.
Objective: In this article, we present CHESSIoT, a model-driven engineering environment that integrates
high-level visual design languages, software development, safety analysis, and deployment approaches for
engineering multi-layered IoT systems. With CHESSIoT, users may conduct different engineering tasks on
system and software models under development to enable earlier decision-making and take prospective
measures, all supported by a unique environment.
Methodology: This is achieved through multi-staged designs, most notably the physical, functional, and
deployment architectures. The physical model specification is used to perform both qualitative and quantitative
safety analysis by employing logical Fault-Trees models (FTs). The functional model specifies the system’s
functional behavior and is later used to generate platform-specific code that can be deployed on low-level
IoT device nodes. Additionally, the framework supports modeling the system’s deployment plan and run-time
service provisioning, which would ultimately be transformed into deployment configuration artifacts ready for
execution on remote servers.
Results: To showcase the effectiveness of our proposed approach, as well as the capability of the supporting
tool, a multi-layered Home Automation system (HAS) scenario has been developed covering all its design,
development, analysis, and deployment aspects. Furthermore, we present the results from different evaluation
mechanisms which include a comparative analysis and a qualitative assessment. The evaluation mechanisms
target mainly completeness of CHESSIoT by addressing specific research questions.
1. Introduction

Internet of Things, Machine Learning, and Cloud Computing are
expected to drive the next wave of the industrial revolution [1]. IoT
is regarded as a powerful network of systems architecture that com-
bines several heterogeneous, independently networked (sub-)systems
working together to achieve a common goal that the independently
operating systems cannot realize. A typical IoT system consists of

✩ This work has received funding from the Lowcomote project under the European Union’s Horizon 2020 research and innovation program under the Marie
Skłodowska-Curie grant agreement no813884. This work has also been partially supported by the EMELIOT national research project, which has been funded by
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(S. Gianfranceschi), alfonso.pierantonio@univaq.it (A. Pierantonio).
1 https://internetofthings.ibmcloud.com/
2 https://iot.eclipse.org/
3 https://aws.amazon.com/iot/

multiple layers: the edge layer generally comprises devices and sensors
that collect data from the physical world and communicate it to the
next layer; the fog layer is in charge of transmitting data acquired by
the edge layer to the cloud layer, which is a centralized repository
where data from all devices is stored and analyzed. This layer also
includes data storage, analysis, and management services. Each layer of
IoT systems is crucial to make them operate efficiently and offer users
valuable insights and automation capabilities [2].
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IoT systems generate massive amounts of data from sensors and
devices, which increases development costs and time as system com-
plexity grows [3]. These systems exhibit significant heterogeneity in all
aspects and are often deployed in harsh environments, which can lead
to errors and failure that may result in human harm. As reactive sys-
tems, IoT devices constantly interact with their surroundings, making
IoT applications highly dynamic and prone to unexpected behavior [4].
Identifying unexpected behavior while ensuring essential functionality
can be challenging, especially in a dynamic system. To alleviate these
challenges, developers can use integrated development environments
(IDEs) based on domain-specific high-level languages, which can ab-
stract many of the intricacies and specifics of hardware, software,
communication media, and protocols [5]. Such an approach would
reduce heterogeneity and technological hurdles and promote advanced
automated software engineering tools that enable faster and more
secure software development. Additionally, these tools should provide
means for reducing user effort and maintaining system correctness
during development to ensure system robustness. Several successful
platforms such as IBMWatson IoT,1 Eclipse IoT,2 and AWS IoT3 are
vailable to address these challenges, but their usability complexity
oses further challenges.

Model-driven engineering (MDE) has demonstrated significant ben-
fits in automating the software development process by promoting the
se of models as first-class citizens, allowing subsystems to be designed,
eveloped, and analyzed independently before integration into a fully
unctional system [6]. In addition, domain-specific languages (DSLs)
ailored to specific application domains are used in MDE to define
omain models and enable domain experts to define system behavior
ased on their expertise, improving productivity and communication
ith developers [7].

This paper presents CHESSIoT, a model-driven framework for engi-
eering multi-layered IoT systems. CHESSIoT permits users to design,
evelop, analyze, and deploy engineering IoT systems from the same
nvironment. Through CHESSIoT, a user can benefit from a multi-view
evelopment environment in which each of the supported views has
ts own underlined constraints that enforce its specific privileges on
odel entities and properties that can be manipulated. This article
ses the term ‘‘engineering’’ to refer to the process of integrating

‘development, analysis, and deployment’’ when realizing IoT systems.
he CHESSIoT environment is built on top of the CHESS toolchain [8]
o provide a fully decoupled extension for supporting the design, devel-
pment, analysis, and deployment, targeting multi-layered IoT systems.
n CHESSIoT, different aspects of the system can be designed inde-
endently and then interlinked to satisfy specific engineering tasks to
e performed on the model. To achieve that, the designer relies on a
HESSIoT DSL in which the meta-modeling syntax has been specified
s an extension to both UML and SysML languages.

CHESSIoT DSL comprises three primary DSLs, i.e., the System-level,
oftware, and Deployment DSLs. System-level DSL focuses on the system-
evel architecture of the system across all layers of a typical IoT system
y enabling early safety analysis. In CHESSIoT safety analysis, the
ndividual components are annotated with their failure behavior fol-
owing error propagation and transformation rules [9]. An automated
ailure Logic Analysis (FLA) can be performed when the model is
omplete. During the analysis, each behavior is systematically analyzed
o determine the top-level system failures. Furthermore, it is possible
o fully generate the system’s Fault Trees (FTs) and perform qualitative
nd quantitative Fault Tree Analysis (FTA) based on the component’s
ailure probabilities.

Following a component-based design methodology, the Software
SL environment offers means for the user to compose all the software
omponents of the system, their internal decomposition, and their func-
ional behaviors through the use of state machines. In doing so, internal
ayloads, events, actions, and guards are associated with states and
heir transitions to realize the desired component’s behavioral goal.
2

hen the model is complete, a CHESSIoT2ThingML model transforma-
ion can be applied to generate a series of fully functional ThingML
odels [10]. ThingML is amongst the most popular MDE tools for the

oT domain.
A typical IoT system’s components can be deployed at any layer,

amely edge, fog, and cloud. Thus, the CHESSIoT Deployment DSL offers
eans for modeling the system deployment plans and its runtime ser-

ice provisioning. The deployment model connects the software to the
ctual system nodes in which the software program will be executed.
he model decomposes the interdependency between nodes, machines,
nd services deployed to it. When the model is complete, a model-to-
ext transformation can be launched, generating a .yaml configuration
ile ready to be executed on a docker server.

Runtime service provisioning refers to allocating and configuring
esources, such as computing power, storage, and network connec-
ivity, to make the modeled system work [11]. In runtime service
rovisioning, resources are dynamically allocated based on the needs
f the program or application at any given time. CHESSIoT offers a
odel-driven runtime service provisioning environment that automat-

cally configures software services based on a predefined model. The
HESSIoT provisioning abstraction is defined using deployment scripts
eferred to as agents. These agents are annotated to the deployment
odes in the model to provide run-time monitoring of the deployed
ervices. A textual language for defining deployment rules is used to
escribe the agents’ behavior, which is later transformed into Ansible
laybook scripts [12] that can be run manually on a remote machine
ased on the status of the deployed configuration.

Different studies such as [13–16] have been conducted to iden-
ify the state-of-the-art, trends, and opportunities in engineering IoT
ystems. Among others, automated development approaches and plat-
orms such as MDE4IoT [17], ThingML [10], IoTML/BrainIoT [18],
imulateIoT [19], and Montithings [20] demonstrate their potential
s realistic approaches for developing scalable IoT systems. However,
inding a platform that integrates all engineering infrastructures namely
odeling, development, analysis, and deployment is still missing. To

howcase the effectiveness of our proposed approach, as well as the
apability of the supporting tool, a Home Automation system (HAS)
se case is presented covering all its modeling, development, analysis,
nd deployment in CHESSIoT. Furthermore, we present the results from
ifferent evaluation mechanisms that target the approach complete-
ess which include a comparative analysis and a qualitative assess-
ent based on the Multiple Modeling Quality Evaluation Framework

MMQEF) approach [21].
Consequently, we summarize the contribution of this paper as fol-

ows:

• We present CHESSIoT, a domain-specific language for modeling
the system, functional, behavior, and deployment architectures of
a multi-layered IoT system.

• We show in detail the CHESSIoT safety analysis approach in terms
of its support for qualitative and quantitative Fault-Tree Analyses.

• We describe the development and deployment approach and the
generation of supported artifacts at different development stages.

• We present a Home Automation system use-case in which we used
the tool to design, develop, conduct safety analysis, and support
its deployment.

• We present and discuss an evaluation mechanism that uses a
comparative analysis as well as an MMQEF-based qualitative
analysis of the CHESSIoT tool.

Structure of the paper: Section 2 presents an overview of exist-
ng model-based approaches for engineering IoT systems. Section 3
resents the proposed approach, which includes the CHESSIoT DSL
.1, the supported model-based safety analysis 3.2, the development
.3, and the deployment 3.4 approaches. Section 4 presents a Home
utomation System running example to showcase the capability of

he supporting tool in covering all three engineering tasks. Section 5
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presents the evaluation, including a comparative analysis of existing
methodologies for engineering IoT systems as well as an MMQEF-based
qualitative analysis reflecting the research questions posed. Finally,
Section 6 concludes the paper as well as highlighting our future work
prospects.

2. Related work

Model-driven engineering (MDE) is a software development method-
ology that emphasizes the creation and utilization of domain models
throughout the system development process. MDE has proven effective
in managing complex problems in software engineering by relying on
abstraction. By defining models with concepts that are independent of
underlying implementation technology and more closely related to the
problem domain of interest, MDE can boost productivity and speed up
time to market [22]. In the context of IoT, MDE focuses on defining
the behaviors of IoT devices and the data they process rather than the
software that runs on them. MDE has contributed to automating various
development processes in IoT by capturing the system’s requirements,
architecture, and design in models that can be transformed into the
required implementation artifacts using code generators [10,20,23].
However, developing IoT code generators that can handle large models
accommodating a diverse set of client requirements remains challeng-
ing due to the high heterogeneity in IoT hardware devices, data sources,
protocols, and deployment levels [16].

This section provides an overview of existing model-based ap-
proaches covering IoT engineering aspects, including modeling, de-
velopment, analysis, and deployment. In Section 2.1, we present ap-
proaches focusing on IoT software modeling and code generation.
Section 2.2 presents existing research that focuses on fault-tree analysis
for safety analysis of IoT systems. Finally, we cover related approaches
that focus on deployment modeling and possible support for runtime
deployment of IoT systems in Section 2.3.

2.1. Model-based development of IoT systems

In this section, we focus on the MDE approach to software modeling
and development that generates code ready for deployment on IoT
devices.

Ciccozzi, F. et al. [17] introduced MDE4IoT, an MDE platform
that combines different UML DSLs to support the design, develop-
ment, and runtime management of IoT systems by providing means
for modeling and self-adaptation of Emergent Configurations (ECs) of
connected systems. MDE4IoT uses model-to-model and model-to-text
transformations to generate platform-specific code from state machines.
The platform also supports run-time monitoring and self-adaptations
through re-allocations and re-generation mechanisms based on the
system’s runtime feedback.

Costa B. et al. [24] developed SysML4IoT, a tool for Model-Based
Systems Engineering in the context of IoT application development,
with a focus on the design phase. This tool builds upon the IoT-A
domain reference model,4 established by a European research body,
nd the ISO/IEC/IEEE 15288 standard,5 to enrich system models with
ystems Engineering concepts. SysML4IoT adopts a multi-disciplinary
pproach to IoT application design by utilizing views and viewpoints
o cater to different stakeholders involved in the process. In [25],
ysML4IoT was extended to assist IoT application engineers in accu-
ately modeling IoT applications and verifying their quality of service
QoS) properties. A model-to-text translator was developed to con-
ert the model and QoS properties specified on it to be executed by
uSMV [26], a mature model checker that enables the entry of a system
odel consisting of many communicating Finite State Machines (FSM)

4 https://www.iot-a.eu/public/
5 https://standards.ieee.org/ieee/15288/5673/
3

and automatically checks its properties expressed as Computational
Tree Logic (CTL) or Linear Temporal Logic (LTL) formulas.

Thramboulidis K. et al. [27] introduced UML4IoT, an MDE plat-
form for industrial automation systems, which supports the automa-
tion of the generation process of IoT-compliant layers required for
the cyber–physical component to be integrated into the modern IoT
manufacturing environment. It achieves this by transforming mecha-
tronic components into Industrial Automation Things (IAT) through
model-to-model transformation. UML4IoT utilizes the Open Mobile
Alliance (OMA) Lightweight Machine to Machine (LWM2M) application
protocol, which runs on top of the Constrained Application Protocol
(CoAP) communication protocol, to expose the IoT interface as simple
smart objects [28]. The platform also enables the usage of high-level
languages such as Java to specify the system’s behavior in case a
higher-level design specification such as the UML one is unavailable.

Harrand N. et al. [10] presented ThingML, an IoT engineering
platform that combines well-proven textual software-modeling con-
structs aligned with UML, such as statecharts and components, with
an imperative platform-independent action language for developing IoT
applications. In ThingML, a thing is defined by a set of properties,
functions, messages, ports, and state machines, and these behaviors are
local to a thing and can be accessed only through interfaces inside the
state machines or functions. The interaction between things is enabled
through required or provided ports via message exchanges. ThingML
also provides an advanced multi-platform code generation framework
that supports multiple target programming languages such as C/C++,
Java, Arduino, JavaScript, Python, and Go.

In their paper, Nicholson et al. [29] introduced IoTML, an integrated
modeling tool developed in the context of the BRAIN-IoT project [18]
to facilitate the rapid prototyping of intelligent cooperative IoT sys-
tems based on shared models. IoTML is implemented as a Papyrus
profile within the BRAIN-IoT modeling environment, which consists of
three macro-blocks: the BRAIN-IoT Modeling Framework, the Market-
place, and the Federation of BRAIN-IoT Fabrics. Models created using
IoTML are transformed into XML format and uploaded to the BRAIN-
IoT marketplace for run-time system deployment and dynamic remote
edge/cloud reconfiguration.

Meanwhile, Claudio et al. [30] presented COMFIT, a Cloud and
Model-based IDE for the Internet of Things, specifically designed to
target wireless sensor network (WSN) applications. The COMFIT mod-
eling environment is built on top of Papyrus and offers a simple
multi-view interface for modeling the system’s requirements, structural
and behavioral aspects. The tool allows for the creation of wireless
nodes and communication links in the structural view, while model
activities and behaviors are represented as functional units that can be
linked together based on the desired execution sequence. Additionally,
COMFIT provides a model-checking infrastructure that follows the OCL
rules specified in the meta-model.

Muccini H. et al. [31] presented CAPS, an architecture-driven mod-
eling framework for developing situational aware cyber–physical sys-
tems. CAPS employs a multi-view architectural approach that combines
software component design and interactions, hardware specification for
situational awareness, and the physical environment where hardware
equipment is deployed. In [32], the authors introduced CAPSml, an
extension to CAPS that supports platform-specific code generation using
ThingML [10].

Dhouib S. et al. [33] introduced Papyrus4IoT, a modeling tool
developed under the Smart, Safe, and Security Software Development
and Execution Platform (S3P) project. Papyrus4IoT provides an envi-
ronment for designing and deploying complex IoT systems following
an IoT-A reference architecture [2]. The designer can define process
specification definition, functional and operational platforms, and de-
ployment, which involves allocating the system’s functional blocks to
the device processing units. The authors proposed using development-
time models to supervise a running IoT system to reflect the Mod-

els@Runtime monitoring approach. This approach helps detect overall

https://www.iot-a.eu/public/
https://standards.ieee.org/ieee/15288/5673/
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system critical states and make decisions on adapting the running
system.

Salihbegovic A. et al. [5] introduced DSL-4-IoT, a high-level visual
programming language-based tool designed to simplify the complexity
and heterogeneity of IoT systems. With the help of the editor, the
application designer can configure the system structure and select
devices, sensors, and actuators from built-in library modules. Once the
design is complete, the user can export the data into a JSON array con-
figuration file that contains information about the position of all items,
relationships between items and groups, and the value of all configured
fields associated with items and data types. The configuration files
can then be transferred manually to the respective OpenHAB runtime
directory or automatically downloaded using a simple web service for
execution.

J.A. Barriga et al. [19] presented the SimimulateIoT tool, which
enables users to design complex IoT simulation environments and
deploy them without writing code. The approach relies on a domain
metamodel, a Eugenia-generated graphical concrete syntax, and a series
of model-to-text transformations to generate cross-layer code from
sensors, actuators, fog nodes, and cloud nodes. During the simulation
phase, a set of Object Constraint Language (OCL) [34] constraints can
be defined to validate the model’s correctness in compliance with the
SimulateIoT metamodel. When the generation process is finished, the
tool may deploy the generated artifacts as microservices and Docker
containers, with which the generated elements are coupled using a
publish–subscribe communication protocol.

Marah et al. [35] presented a model-driven round-trip engineering
(RTE) methodology for the development and deployment of Wireless
Sensor Network (WSN) applications on TinyOS. The authors high-
lighted the challenges involved with managing power limits in TinyOS
and recommend employing model-driven engineering (MDE) to help
with the design and implementation process. To support the MDE of
TinyOS applications, they have developed a domain-specific modeling
language called DSML4TinyOS supported by the RE4TinyOS toolset.
Finally, it is also shown how to use RE4TinyOS to successfully re-
verse engineer existing TinyOS applications, allowing for model-code
synchronization and inclusion into the proposed MDE environment.

Nayeon Bak et al. [36] introduced SmartBlock, a visual block pro-
gramming language for SmartThings6 home automation. It enables
users to construct IoT applications by dragging and dropping graphical
components, making it accessible to individuals who are not proficient
in programming. Smart Block relies on the IoTa calculus [37], which
generalizes event-condition-action (ECA) rules. It enables users to write
IoT applications in the ECA style and includes a visual programming
environment that checks for redundancy, inconsistency, and circular-
ity in the ECA rules before generating code. Based on a user study,
the evaluation demonstrates that the Smart Block can build 96.4%
of the SmartApps provided by the official SmartThings IDE and is
understandable for clients.

Bruno et al. [38] presented IoTDraw, a completely OMG-compliant
executable modeling language for SOA-based IoT systems, which has
practical implications for the development of IoT applications. It pro-
vides a framework that can be implemented by any tool that complies
with OMG standards, enabling for the specification and analysis of
SOA-based IoT systems. IoTDraw can help developers address interop-
erability issues and ensure that IoT applications perform as intended.
The authors evaluate the IoTDraw framework using an evaluation form
and analyze the responses of the participants. The findings demon-
strate a tendency of agreement with the evaluation questions, vali-
dating IoTDraw’s effectiveness in tackling the issues of SOA-based IoT
applications.

Claudia et al. [39] presents a Model-Driven Development (MDD)
methodology for developing software applications for Internet of

6 https://www.smartthings.com/
4

Things (IoT) platforms. The process is divided into four stages, each
with a different level of abstraction, viewpoint, and granularity with
software implementation artifacts as the output artifacts. The method-
ology’s phases include business requirement analysis, business logic
definition, integrated services solution design, and technological solu-
tion development. The presented Service-Oriented Architecture (SOA)
promotes interoperability throughout heterogeneous devices and pro-
vides a bridge between the digital and physical worlds of the IoT
domain.

Soukaras et al. [40] presented IoTSuite, a suite of tools for IoT ap-
plications development, to reduce development effort. The tool consists
of the following components: (i) an editor to support the application
design phase by allowing stakeholders to specify high-level descrip-
tions of the system under development; (ii) an ANTLR7 based compiler
that parses the high-level specification and supports the application
development phase by producing programming framework that reduces
development effort in specifying the details of components of an IoT
application; (iii) a deployment module, which is supported by the mapper
and linker modules; (iv) a runtime system, which leverages existing
middleware platforms and it is responsible for the distributed execution
of the modeled IoT application. The current implementation of IoTSuite
targets both Android and JavaSE-enabled devices and makes use of an
MQTT-based middleware.

Vitruvius [41] is an MDD platform that allows users with no pro-
gramming experience to create and deploy complex IoT web appli-
cations based on real-time data from connected vehicles and sensors.
Users can design their ViWapplications straight from the web using
a custom Vitruvius XML domain-specific language. Furthermore, Vit-
ruvius provides a variety of recommendation and auto-completion
features that aid in creating applications by reducing the amount of
XML code to be written.

MIDGAR [42] is an IoT platform specifically developed to address
the service generation of applications that interconnect heterogeneous
objects. This is achieved by using a graphical DSL in which the user
can interconnect and specify the execution flow of different things.
Once the desired model is ready, it gets processed through the service
generation layer, generating a tree-based representation model. The
model is then used to generate a Java application that can be compiled
and run on the server.

Pramudianto F. et al. [43] presented IoTLink, a development toolkit
based on a model-driven approach to allow inexperienced developers
to compose mashup applications through a graphical domain-specific
language. Modeled applications can be easily configured and wired
together to create an IoT application. Through visual components, IoT
Link encapsulates the complexity of communicating with devices and
services on the internet and abstracts them as virtual objects that
are accessible through different communication technologies. To sup-
port interoperability with other services, authors implemented custom
components like ArduinoSerial for Arduino connectivity, SOAPInupt,
RESTInput, MQTTInput, etc.

Erazo-Garzón L. et al. [44] presented Monitor-IoT, a graphical de-
signer based on the Obeo Designer Community and Eclipse Sirius tools.
Monitor-IoT supports developers in modeling IoT multi-layer moni-
toring architectures with a high level of abstraction, expressiveness,
and flexibility. The tool enables the definition of computing nodes and
their resources that support the monitoring processes (data collection,
transport, processing, and storage) at the edge, fog, and cloud layers. It
is also possible to specify the properties to be monitored for each entity
as well as the definition of dataflows between digital entities based on
synchronous or asynchronous communication.

It is worth noting that the model-based approaches mentioned
above, which support the development of IoT systems, were chosen
based on their maturity, support for IoT system design, and code

7 https://www.antlr.org/

https://www.smartthings.com/
https://www.antlr.org/
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generation. Regarding these criteria, we position CHESSIoT as follows.
Many of the approaches mentioned above utilize the Eclipse Modeling
Ecosystem as their tooling base, which allows them to leverage the
different modeling infrastructures provided by Eclipse. However, only
a few tools, such as [17,24], and [31], support Multi-view modeling.
Moreover, only [19,44] enable the modeling of IoT systems that cover
all three IoT layers: Edge, Fog, and Cloud. Although [44] supports var-
ious interesting concepts, it does not support the generation of source
code, monitoring scripts, or data flows that can be executed on target
IoT systems. Therefore, we believe that CHESSIoT’s unique contribution
is significant in advancing the state of the art in developing IoT systems
across all layers, including the entire engineering ecosystem it offers.

2.2. Model-based safety analysis of IoT systems

In this section, we review existing approaches that enable model-
based analysis using the Fault-Tree Analysis (FTA) approach. While
our focus is on the IoT domain, we also consider approaches with a
broader scope, as there is a lack of IoT-specific research supporting
safety analysis through the FTA methodology.

One widely used tool in both industry and academia for FTA is
the ISOGRAPH tool [45]. The ISOGRAPH Reliability workbench is a
powerful visual modeling and analysis environment used in the system
engineering domain. ISOGRAPH provides various reliability analysis
features such as failure rate and maintainability prediction, Failure
Mode Effects and criticality Analysis (FMECA), Reliability Allocation,
Reliability Block Diagram, Fault Tree, Event Tree, and Markov analysis.
However, in ISOGRAPH the Fault Trees are manually constructed based
on the system failure requirements provided by safety experts.

Silva I. et al. [46] introduced a dependability evaluation tool for
IoT applications that considers hardware and permanent link faults.
This tool enables the modeling of the system network architecture and
the definition of network failure condition events (nfc) that are later
used to generate the FT. The nfc formalism follows logical association
ules for addition and multiplication to reflect ‘‘OR’’ and ‘‘AND’’ gates,
espectively. The tool supports both qualitative and quantitative anal-
sis by generating minimal cut-sets. While this tool supports automatic
eneration and analysis of FTs, it differs from our approach in terms of
ystem failure behavior formalism and does not support any mechanism
elated to failure transformation, propagation, and injection.

Chen Y. et al. [47] proposed a fault diagnosis method based on a
ombination of FTA and fuzzy neural networks for aquaculture IoT
ystems. In their approach, the FT is manually constructed for each
ystem component, and the ‘‘IF-THEN’’ rules are extracted from the
T for the fuzzy neural network to learn the relationship between
ault symptoms (failures) and faults. While this method uses FTA for
afety analysis, it differs from our approach in that the FT generation
s manual, and no quantitative analysis is supported.

Xing L. et al. [48] introduced an approach to model the failure
ehavior of mesh storage area networks (SANs) using a dynamic fault
ree (DFT) or a network graph of imperfect links. The reliability of the
esh SAN is evaluated using a binary decision diagram-based method.
he results provide insights into the general behavior of mesh SAN
ystems, providing guidelines for the reliable design and operation
f SANs. However, like the ISOGRAPH tool, the FT construction is
one manually from the system failure requirements provided by safety
xperts.

Alfred et al. [49] proposed Relational Reference Attribute Gram-
ars for modeling and analyzing IoT systems. Reference Attribute
rammar (RAGs) support declarative analysis over abstract syntax trees
nd are used for building compilers and other language-based tools. The
evice-dependency analysis methodology computes what devices must
e available and connected for a specific event, such as turning on a
ight when a door opens. The analysis computes the control flow in
omposition scripts as well as the transitive closure of all dependency
5

xpressions and projects the expanded dependency expression down
to a set of sets of devices. The final dependency tree is calculated
throughout the calculation of the device-to-device transitive closure.

In their work, Parri J. et al. [50] introduced JARVIS (Just-in-time
ARtificial intelligence for the evaluation of Industrial Signals), which
is a model-driven tool designed to facilitate the integration of physical
IoT devices, enterprise-scale software agents, data analytics, and human
operators. The tool uses agents to develop and integrate intelligent data
agents capable of detecting failure events following a set of failure
modes, and a FaultTreeAnalyzer agent to perform Fault Tree Analysis
on detected failure events.

Various approaches for the automatic generation of FTs from SysML
models have been proposed; however, they do not explicitly target the
IoT domain. For example, the authors of [51] proposed an approach
for generating FTs from SysML models, which relies on information
provided in activity and IBD diagrams and the FMEA table. Although
the current tool generates a single FT picture representing the system
failure paths, no FT models are generated. In [52,53], the authors pre-
sented an MDE environment for performing preliminary safety analysis
from SysML models. They use UML state machines to model the com-
ponent functional behavior and annotate them with failure behaviors;
later, this information is used to generate the system FTs.

Nataliya et al. [54] presented a framework that integrates the formal
method approach for facilitating automatic FT generation within an
MDE workflow. The approach annotates SysML model elements with
formal analytical expressions showing how deviations in the block
outputs can be caused by internal failures of the block and/or pos-
sible deviations in the block inputs. Later, the model is transformed
into an AltaRica model [55] representation to perform qualitative and
quantitative analysis.

From the above-presented approaches, we could position our pro-
posed approach as follows: Although the JARVIS platform [50] sup-
ports the qualitative analysis, it does not support the quantitative
analysis, and its FT generation approach relies on the practical data
model constructed by the deployed agent, whereas our approach uses
FPTC specifications. In addition to that, although [51] supports the
block-based design to derive the component failure propagation be-
haviors, they do not cover certain topics such as ‘‘internal failure of
the components’’, as well as no support for any kind of automated
qualitative or quantitative FT analysis is provided.

Other approaches such as [56] present manual derivation of FT
diagrams from the Reliability Block Diagram (RBD) and, later, the
qualitative and quantitative analysis are manually performed whereas
our approach is automated. Furthermore, unlike our approach (which
models the system architecture, annotates the model with safety-related
information, and later generates and analyses FTs), several approaches,
such as [57–59], propose SysML profiles which are used to create FT
models and later translate them into FT graphs without any support for
system modeling itself. Interestingly, in [60] authors propose a Meta-
modeling-based Failure Propagation Analysis (MetaFPA) framework to
support the synthesizing of the system failure propagation models in
order to help the creation of the system FTs. Although the presented
framework presents an alternative to FPTC on how system failure
propagation rules can be modeled, the framework does not generate
the system FTs but relies on the ISOGRAPH tool [45] to perform the
FTA. From the above discussions, we can conclude that our proposed
approach is unique and surely contributes to the advancement of the
state of the art in the domain of safety analysis of IoT systems based
on the system’s failure logic.

2.3. Model-based deployment of IoT systems

In this section, we review various approaches that focus on model-
based deployment, runtime management, and automation of IoT sys-
tems across all layers. While some approaches may overlap with the
categories mentioned above, we have included them here because of

their significant deployment support.
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MontiThings, an integrated modeling language for IoT applications
and their deployment, was proposed by Kirchhof J.C. et al. [20].
MontiThings provides a model-driven toolchain for generating exe-
cutable IoT containers, automated deployment planning, deployment
suggestions, and monitoring of the generated container, with the ability
to suggest deployment goal changes based on deployment planning
feedback. This approach is targeted mainly at the edge layer.

Duran et al. [61] proposed a technique for reconfiguring running
IoT applications using coordinated rules acting on devices. The ap-
proach compares two versions of an application (before and after
reconfiguration) to ensure that several functional and quantitative
properties are satisfied. This information can be used by the user to
decide whether to trigger the deployment of the new application. The
approach supports the composition of rules using advanced Event-
Condition-Action (ECA) rules, such as sequential execution, the choice
between rules, concurrent execution, or repetition. Property-based ver-
ification is used to analyze whether the proposed reconfiguration pre-
serves the application’s consistency.

Alfonso et al. [62] proposed a Domain-Specific Language (DSL)
that covers the static and dynamic aspects of IoT deployment. The
DSL covers modeling primitives for the four layers of an IoT system
(IoT devices, edge, fog, and cloud nodes), including the deployment
and grouping of container-based applications. The tool also supports a
sublanguage for expressing adaptation rules to ensure QoS at runtime.
A proof of concept generator for deploying the modeled IoT system on
a K3S-based infrastructure (Kubernetes distribution built for IoT and
edge computing) is provided.

DoS-IL, a textual domain scripting language for resource-constrained
IoT devices, was introduced by Negash B. et al. [63]. It allows changing
the system’s behavior after deployment through a lightweight script
written in the DoS-IL language and stored in a gateway at the fog layer,
supporting easy maintenance and modification after deployment with-
out physical access to the end node. The gateway hosts an interpreter to
execute DoS-IL scripts that devices in the perception layer can access,
while the Device Object Model (DOM) on the target node exposes the
available resources for the DoS-IL script to manipulate.

Topology and Orchestration Specification for Cloud Applications
(TOSCA) was presented by Vögler F. Li, M. [64]. TOSCA aims to
improve the reusability of service management processes and automate
IoT application deployment in heterogeneous environments. It speci-
fies a meta-model for describing the structure and management of IT
services, providing a formal way to describe the internal topology of
application components and the deployment process of IoT applica-
tions. TOSCA can model common IoT components, such as gateways
and drivers, as well as platform-specific properties necessary for layer-
specific deployment, using various XML-like textual notations to ease
deployment on heterogeneous devices and platforms.

Ferry et al. [65] proposed GENESIS, a cloud-based domain-specific
modeling language that facilitates continuous orchestration and de-
ployment of Smart IoT systems on edge and cloud infrastructures. The
component-based approach used in GENESIS allows for the separation
of concerns and reusability, making the deployment models an assem-
bly of components. The GENESIS execution engines support three types
of deployable artifacts: ThingML model [10], Node-RED container [23],
and any black-box deployable artifact (e.g., an executable jar). The
created deployment model is then passed to the GENESIS deploy-
ment execution engine, which is responsible for deploying the software
components, ensuring communication between them, supplying the
required cloud resources, and monitoring the deployment’s status.

IADev [66] is a model-driven development framework that orches-
trates IoT services and generates software implementation artifacts for
heterogeneous IoT systems while supporting multi-level modeling and
transformation. This is accomplished by converting requirements into
a solution architecture using attribute-driven design. In addition, the
components of the produced application communicate using RESTful
6

APIs.
According to the preceding assessment of model-based deployment
approaches, same as CHESSIoT, quite a number of the presented ap-
proaches allow primarily the modeling of deployment containers as
well as the means of expressing deployment rules. However, the ma-
jority of the tool focuses primarily on high-level deployment modeling,
with no complete integration or reflection of other developed and/or
generated artifacts in the pre-deployment stages. CHESSIoT, on the
other hand, considers all of the semantic relationships from the pre-
vious stages while building the deployment plan and at the run-time
provisioning configuration.

3. Proposed approach

This section introduces a new engineering methodology for IoT
and its accompanying tool, CHESSIoT. Our approach is designed to
provide IoT developers with a modeling environment to engineer multi-
layered IoT systems. With CHESSIoT, users can take advantage of a
multi-view development environment, each with its constraints that
enforce specific privileges on model entities and properties that can
be manipulated. Different aspects of software can be modeled indepen-
dently and then interlinked to meet specific engineering requirements.
Users can perform various engineering activities on CHESSIoT models,
such as generating IoT device code, performing analyses, and deploying
applications. Fig. 1 provides a high-level illustration of the proposed
approach supported by the CHESSIoT tool.

In particular, the approach relies on three domain-specific lan-
guages for system, software, and deployment specifications. These DSLs
are aligned with different modeling views as well as the engineering
tasks that they correspond to. A more detailed explanation of CHESSIoT
DSL is given in Section 3.1. Depending on the user’s needs and the
stage of the development process, a specific view-compliant model
corresponding to a specific metamodel could be developed.

In the System view, an IoT engineer creates a model of the entire
IoT system, including its functional components, sub-components, and
connections. This model can be given to a safety expert who will add
failure logic behavior and basic component failure rates for analysis.
Qualitative and quantitative analysis can be done through model-to-
model transformations, including Fault Trees Analysis. Section 3.2
provides more detailed information on this topic.

Users can create a functional model in the Component View that
includes the system’s key software components, sub-functions, and
relationships. Additionally, the Behavior Model allows each main sub-
function of the system to have its own state machine, which defines
events, actions, and guards associated with states and their transi-
tions to achieve the desired behavior. Once the model is complete,
the CHESSIoT2ThingML transformation is initiated, generating a series
of functional ThingML models that can be used to create platform-
specific code ready for deployment on low-level IoT devices. The
same CHESSIoT software model can be expanded with other extra-
functional properties and benefit from analysis support. For example,
as demonstrated in previous work [67], CHESS can perform early real-
time schedulability analysis on CHESSIoT models. More information on
these aspects can be found in Section 3.3.

In the Deployment view, users can create a plan for deploying an
IoT system and set rules for managing services during run-time. This
plan breaks down the relationships between different layers, machines,
and the services deployed on them. Additionally, a DevOps engineer
can create a model for automatically configuring software services at
run-time. Once the model is complete, it is transformed into a .yaml
configuration and Ansible playbook scripts, which can be executed on
a docker server. For more information on these topics, please refer to

Section 3.4.
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Fig. 1. Overview of the CHESSIoT approach.
3.1. CHESSIoT DSL

The CHESSIoT modeling environment has been built on top of
the Eclipse Papyrus8 in terms of extensions of UML/SysML. The three
profiles that make up the CHESSIoT DSL are explained in detail below.

3.1.1. System-level DSL
The System DSL has been designed to satisfy the high-level physical

representations and their relationships within a typical IoT system. The
DSL supports the multi-layered specification of a typical IoT system
ranging from the low-level edge layer, Fog-layer as well as the cloud.
The language extends the rich SysML modeling language in terms of
new IoT-specific stereotypes and their interrelations. Note that, at this
level, the model does not include any information related to the func-
tional behavior of elements rather than their main physical construct.

The modeling concepts underpinning the system DSL are shown
in the metamodel depicted in Fig. 2. The System metaclass represents
an IoT system as a collection of physical devices and other entities
connected to collect, process, send, receive, and store data. These
device entities can range from tiny sensors to much larger items like
cars and planes. As the top-level representation element, the system
can encapsulate other subsystems, allowing the IoT system-of-systems
architectures to be supported.

The IoTElement represents things that can be physically represented
in the IoT ecosystem. This can be of any type depending on the layer
from which such an element is regarded. This can range from a tiny
micro-controller at the thing layer, a gateway at the fog layer, and
a cloud server when looked at from the cloud side. In the physical
world, the IoTElement can also represent an object as bigger as a car, a
plane, or a house. The system can have one or more IoTElements; each
with one or more communicating ports. The modeling constructs can

8 https://www.eclipse.org/papyrus/
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be conceptually grouped with respect to the main layers they define,
i.e., edge, fog, and cloud layers as described below.

Edge Layer: OnDeviceElement represents any form of low-level IoT de-
vice that may contribute to the system’s functional behavior at the edge
layer. A SensorBlock is primarily responsible for detecting changes in its
surroundings and reacts accordingly by generating signals that can be
interpreted by either a human or a machine. A sensor lacks a physical
input port and, in the event of a failure, can react differently based
on the nature and severity of the internal failures. ActuatorBlock is a
device responsible for reacting to received electric signals and acting
upon them by changing the shape, position, or state of the component
or part of the system to which it is attached. An electric servo motor, for
instance, responds to a signal by turning on, off, changing direction, or
speed. In the case of a door-locking system, it can either close or open
the door.

PhysicalBoard represents a hardware controller on which the soft-
ware runs. This can include a number of IoT-related boards that are
expected to execute the actual code, thus interfacing the sensor and
actuator. A Raspberry Pi or Arduino board, for example, processes data
from various sensors and sends appropriate signals to actuators and
other connected devices as the Fog layer. PhysicalEntity can be almost
any physical object or environment on which a OnDeviceElement can
act up. A self-driving car software, for instance, runs on various boards
attached to the car but not on the car itself. So a car is a physical
entity, while those controlling elements can be classified as any type
of on-device element.

It should be noted that a physical entity may host other physical
entities and interact with other physical entities. In general, we con-
sider physical entities to be passive elements, and in the event of a
system failure, they cannot be considered the root cause unless they
are categorized as ‘‘User’’. In particular, the concept of User refers to
a human actor that uses the system or, in certain contexts, is part of
the system itself. A user is a special type of PhysicalEntity that interacts
with other parts of the system at all levers. For example, a user might
interact with an IoT application deployed on a remote server while
actively participating in such a system’s decision-making process. It is

https://www.eclipse.org/papyrus/
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Fig. 2. CHESSIoT System-level metamodel.
worth noting that a user does not necessarily need to be a human; it
can also be an autonomous entity that is intelligent enough to interact
with the system.

Fog Layer: FogElement is any device that serves as a computational link
between the physical and virtual worlds, in this case, cloud infrastruc-
tures. If necessary, these components can do preliminary computations
and convey the results to the on-device elements. This implies that they
may have varied storage and processing capacities depending on the
use case and completely different hardware and software features. Any
IoT device installed at the fog layer for data processing and storage
is represented by a FogDevice. The FogGateway, on the other hand,
transfers information between fog devices and fog servers, as well as
cloud servers connected to it. Finally, FogServer computes this data
to determine the next operation. This layer is critical because it reg-
ulates processing speed and information flow. Fog node configuration
involves understanding different hardware compatibility, the devices
they influence, and networking capabilities.

Cloud Layer: A CloudElement is a type of IoT device that operates at the
cloud level and contributes to the overall functionality of the system. It
builds upon standard IoT elements and can be shown as follows. Similar
to a FogServer, a CloudServer hosts various cloud-based services and
applications. A consumer entity refers to any third-party element that
can communicate with the server to access its data and can be classified
as active or passive. An example of an active consumer entity is a
computer running software to monitor and control sensors remotely.
On the other hand, a passive consumer entity is a traffic light actuator
that receives commands from the server to function.

3.1.2. Software DSL
The CHESSIoT’s software DSL has modeling constructs that allow for

the specification of IoT system behavior. These constructs are displayed
in the metamodel shown in Fig. 3. It is important to note that the
software meta-model mainly supports low-level devices at the edge
layer, but in some cases, these devices could also be deployed at
the fog layer if they fall into that layer. The DSL extends the UML
8

modeling language by defining new IoT-specific stereotypes and their
interrelation. The CHESSIoT Software metamodel can be divided into
two main sections, for specifying functional and behavior aspects of the
constituting components as described below.

Functional aspects: VirtualElement represents an IoTelement in the
virtual world. As mentioned in Section 3.1.1, this could be classified
as any IoT device, an element that could be of interest at the edge. As
shown in Fig. 3, the System can consist of one or many virtual elements,
and depending on the use case, a virtual element could contain one or
more virtual elements.

VirtualEntity is a virtual representation of the PhysicalEntity from
the system model in the digital world. This element can represent any
object or place where IoT devices or equipment are installed. In a room
monitoring system, for example, a room is usually represented as a
virtual entity in which other sensors and actuators are installed.

One of the most fundamental components of the IoT ecosystem is
the Sensor, which is responsible for transforming relevant information
from its surroundings into an electric signal that the computing board
can process. On the other hand, the Actuator converts electric signals
from the board into physical events or states, depending on its type. The
language supports different sensor categories and types. A combination
of sensor category and type servers is a crucial determining factor
during transformation, and it is also the same case for the actuator. We
understand that there are many more types of sensors and actuators
than our approach supports, but for the sake of simplicity, we focused
on only a few, as illustrated by the proposed meta-model.

IoTPort allows message exchange between two different compo-
nents by exposing or requiring the data from components. An IoTPort
can have one or more integer pins used to generate pin-related code on
the virtual board. Two special types of ports, MQTTPort and ClockPort,
are employed in specific cases. For instance, MQTTPort specifies the
MQTT-related interface that wirelessly communicates with a remote
broker. This port contains information about the payload type, broker
URL, device topic, and access mode (i.e., publisher, subscriber, or both).
When necessary, the clock port is utilized to define logical delay checks.
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Fig. 3. CHESSIoT Software metamodel.
It should be noted that these two special port types are not required to
be physically connected to others.

VirtualBoard is a virtual representation of the computing board
device where the code runs. This device interacts with sensors and
actuators and uses the IoTPorts to communicate with the external
components.

Behavioral aspects: Every type of VirtualElement has a state machine
with a behavioral specification. The following syntax is used to define
the behavior of the component. Payload is a simple and stand-alone
message object that transports data between components. These ele-
ments can have zero or more parameters that define the type of data
that must be sent.

Events are triggered in various ways based on the component’s
current processing phase. An event can generally be triggered based
on the payload condition detected at the ports. An Event can be a
ConditionalEvent, which occurs during the transition process from one
state to the other, or an InternalEvent, which occurs internally within
the state of a certain component.

Depending on the sort of action to be taken, IoTAction(s) can be
of many forms. These actions can be customarily defined, or they can
reuse the information about the payload and the port where such action
must be carried out. For example, when entering or quitting a state, an
action can be classed as OnEntry or OnExit actions. There are two main
types of actions:

• SetAction: This is used during external communication between
two components through a predefined port.
9

• GenericAction: It is a specific type of action that can be imple-
mented during the design phase for particular measures such as
assignment, print, loop, checking a value status, function call,
and so on. These actions require different arguments and can be
customarily implemented with platform-specific code.

IoTState defines the situation of the component from its initial
engagement to its final disposal in the ecosystem. IoTState extends
existing UML states by collecting all behavior information relating to
events and activities that must be performed at a specific time. From a
transition standpoint, an IoTState can be classified as a source or target,
along with an initial, intermediate, or final state.

IoTTransition makes it possible to transition from a source state to a
target state while preserving the trigger from the invoking condition as
well as the guard value. IoTGuard expressions are boolean expressions
defined by state values. They enable a state transition by determining
whether the OnExit action was correctly completed.

3.1.3. Deployment DSL
The CHESSIoT’s deployment DSL has been defined to aid in the

design of the deployment strategy. The primary purpose is to provide
an intuitive way for the user to define the deployment architecture as
well as runtime service provisioning procedures that can be applied to
configure such generated services remotely. The DSL addresses service-
oriented deployment topologies, mostly at the fog and cloud layers. The
main concepts of the deployment metamodel are shown in Fig. 4.

A Node is a central component that connects all other deployment
elements. It represents a computing cluster at the center that combines
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Fig. 4. CHESSIoT Deployment metamodel.
one or more data processing units. These nodes can be found at any
layer, including edge, fog, or cloud, and are labeled as DeviceNode,
FogNode, and CloudNode, respectively.

The Machine construct is for specifying a dedicated middleware
server that can host one or more services running on it. Machines could
be anything from small computer boards at the edge and fog layers to
huge cloud-computing servers. In our context, the machine is always
declared inside a node and should eventually have an IP address that
the service operating on could be identified from. Other properties,
such as memory capacity and operating system, can be also specified
by the user.

In IoT, a Service is a self-contained entity that can consume acquired
data and apply computational logic to achieve a goal. It can be de-
ployed at practically any layer of the system, depending on the type of
need and the computation capabilities of the node in which the service
is to be run. Services can connect via Web protocols (e.g., HTTPS,
MQTT) and may also depend on one another.

As with CHESSIoT, the end goal of deployment modeling is to gen-
erate docker configuration files (.yaml files), therefore, a service must
be established with basic parameters like imageURL, ports, persistence,
and so on. If the service needs to persist data on the platform, a volume
attribute must be specified, as well as the boolean persistence value set
to true. The priority attribute specifies the order in which individual
services are prioritized in case of a machine memory shortage.

We are mainly concerned with IoT services that are generally in-
volved in a typical IoT ecosystem. An MQTTBroker, for example, is
used to define a remote MQTT server service, and attributes such as
broker type (Mosquitto, HiveMQ, Moquette) are supported. The broker,
which is also a service, captures its specific properties such as type,
anonymous access, persistence, username, and password. The current
implementation enables a user-friendly environment, and in case no
data is provided for a given property, default values are used instead.
10
Other services, such as DataDistributionService like KAFKA, RabitMQ,
and ApacheSpart, are due to be supported.

Furthermore, the environment enables customary configured ser-
vices, and when such a property is employed, the definition is added
to the generated file unchanged. Furthermore, any IoT-specific Ex-
ternalService, such as Node-Red,9 as well as StorageServices such as
database containers, could be specified. Finally, OnDeviceApp can be
defined, allowing it to be distributed on edge devices.

A DeploymentAgent is a collection of predefined expressions deter-
mined at the node level to demonstrate the run-time service provision-
ing behavior on the machines deployed at the nodes. DeviceDepAgent,
FogDepAgent, and CloudDepAgent are defined to perform this task at
the edge, fog, and cloud layers, respectively. Details on the developed
textual deployment language and the corresponding code generator are
given in Section 3.4.

3.2. Model-based safety analysis

IoT systems can experience failures due to various factors, including
device age, data source problems, network issues, deployment envi-
ronment, and external constraints. For instance, human error can also
cause problems. The CHESSIoT safety analysis approach proposes an
early safety analysis method using Fault-Tree Analysis, which involves
annotating a system model with failure behavior rules using the Failure
Propagation Transformation Calculus (FPTC) notation [68].

As illustrated in Fig. 5, the safety analysis process typically com-
mences with the IoT system engineer creating a model based on the
gathered system functional requirements 1⃝ in Fig. 5. These requirements
are mainly acquired through close collaboration with the client. The

9 https://nodered.org/

https://nodered.org/
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Fig. 5. The proposed safety analysis process.
system-level model encompasses the system’s major functional com-
ponents, sub-components, and their interconnections. These system
components can be represented as blocks in SysML Block Definition
Diagrams (BDD), which align with the abstract syntax meta-model
illustrated in Fig. 2. Internal Block Diagrams (IBD) are employed to
illustrate the interdependencies between these components, facilitating
the identification of error propagation paths. Each part or block can
be assigned to a specific architectural subsystem or component. The
physical architecture should possess extensibility to accommodate the
addition of new components or blocks as necessary. The entire safety
analysis process is fully detailed in the next sections.

Once the system model is complete (see the CHESSIoT model 2⃝ in
Fig. 5), it can be handed to the safety engineer for further safety analysis.
The safety expert, similarly to the system engineer, can derive safety
requirements 3⃝ from the needs of the client, domain standards, and his
or her expertise in order to ensure optimal safety. Starting from identi-
fying the typical system-level failures, the safety engineer identifies the
failure behavior for each component following the Failure Propagation
Transformation Calculus (FPTC) notation. The FPTC technique enables
the analysis of component-based systems with cyclic data, control-flow
structures, and closed feedback loops. Such failure behavior referred
to as FLA rules 4⃝ are annotated to the system’s simple comments to
illustrate how failures might occur in a system component and how
they are propagated from one component to another. At this stage, the
safety engineer can additionally set the component’s failure rates 5⃝ to
be used for quantitative analysis.

In practice, a component can act as a source of failure (for example,
by causing a failure in output due to the activation of internal faults)
or as a sink (a component is capable of avoiding failure propagation by
detecting and correcting the failure in input). Furthermore, failures in a
component can be propagated (i.e., a failure can be passed from input
to output) or transformed (by changing the nature of the failure from
one type to another from input to output) [9]. To support the analysis,
the user must establish error propagation or transformation rules for
each possible input failure or internal failure of the component. The
equation in (1) presents a generic structure in which the FLA rules are
specified.

𝐹𝐿𝐴 ∶𝑝𝑖𝑛1.𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖𝑛1,… , 𝑝𝑖𝑛𝑁 .𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑖𝑛𝑁 → 𝑝(𝑜𝑢𝑡1).𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑜𝑢𝑡1,

..., 𝑝 .𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ; (1)
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𝑜𝑢𝑡𝑀 (𝑜𝑢𝑡𝑀)
Table 1
Failure types.
Failure type Description

Early Output is provided too early
Late Output is provided too late
ValueCoarse Output out of range in a detectable way
ValueSubtle Output out of range in an undetectable way
Omission No output is provided
Commission An output is provided when not expected

WHERE: 𝑝(𝑖𝑛1) to 𝑝(𝑖𝑛𝑁) and 𝑝(𝑜𝑢𝑡1) to 𝑝(𝑜𝑢𝑡𝑀) to be the input and out-
put ports of a simple component respectively. Furthermore, 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑖𝑛1)
to 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑖𝑛𝑀) and 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡1) to 𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡𝑀) to be failure mode asso-
ciated with the input and output ports respectively. Table 1 describes
different failure modes and their description.

3.2.1. CHESSIoT to FLA model transformation
The presented approach extends the CHESS-FLA by allowing the

description of the failure behavior of a sub-component in the ab-
sence of an input port (for example, an IoT sensor). For instance,
Sensors may produce erroneous values for numerous reasons, including
wrong calibration, harsh environmental conditions, and degradation
over time [20]. In such cases of internal failure of a first-class element,
no need to have an input port as the failure was initiated internally from
the component. Furthermore, when the failure logic definition is done,
the user can go ahead with the definition of the probability occurrence
of the basic component’s failure events, which is afterward employed
throughout the analysis.

Taking reference to Fig. 5, the Annotated CHESSIoT model 6⃝, pro-
duced by the system expert as previously explained, gets automatically
transformed by means of the CHESS2FLA model transformation to
produce the CHESSIoT FLA model 7⃝. Fig. 6 presents the metamodel of
the resulting CHESSIoT-FLA 7⃝ model. During CHESSIoT2FLA transfor-
mation, CHESSIoTFLA composite components and simple components
are systematically deduced from CHESSIoT blocks and parts. Then,
each lower-level fundamental simple component failure behavior is
systematically evaluated to identify all its potential failure modes. This
gives the transformer the ability to deduce the composite components’
behavior as well as the entire system. The entire system failure behavior
is automatically determined only from the composition of its elements,
as well as the top-level system’s failure probabilities.
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Fig. 6. CHESS-FLA meta-model [69].

Table 2
CHESSIoT to CHESSIoT FLA model transformation mapping.
CHESSIoT model CHESSIoT FLA model

Composite block Composite component
Block part Simple component
Rule Rule
Input & output expression Expression
Flow port Port
Failure Failure

As seen from the FLA meta-model shown in Fig. 6, a composite
component represents a subsystem that contains one or more sub-
components. As mentioned in the previous stages, this component
does not possess the failure behavior by itself, but relies on its sub-
components to determine its failure behavior. On the other hand, a
simple component represents a functional component that can con-
tribute to system failure. Each component, being simple or composite,
has one or more input and output ports, which are referred to when de-
riving failure rules. A rule is composed of a set of input expressions and
output expressions and a prefix always starts it ‘‘FLA:’’. An expression
being either from the input or the output side is made by a combination
of a port and a failure type associated with it. An illustrative rule
is shown in Eq. (2). In addition to that, a high-level transformation
mapping from annotated CHESSIoT 6⃝ to CHESSIoT FLA 7⃝ model is
shown in Table 2
𝐹𝐿𝐴 ∶ 𝑖𝑛𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_1,… ., 𝑖𝑛𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑁 →

𝑜𝑢𝑡𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_1,… .., 𝑜𝑢𝑡𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑀 ;
(2)

When it comes to composite components, any failures that occur
in the output ports of simple components are automatically passed on
to the connected output ports. Additionally, each simple component is
given specific rules that outline input and output expressions reflecting
the failures and their corresponding ports. During the transformation,
the extended notation of the internal failure of a component with no
input ports creates a unique virtual port assigned with a ‘‘noFailure’’
failure type at the component input port to reflect the idea of the
component’s internal failure source. Although it might appear to be a
minor improvement with respect to the existing FPTC infrastructure,
it eliminates a significant amount of confusion during the system
modeling process because otherwise, input ports with no reasonable
connections will be left hanging, which may mislead the user.

At each level of the FLA analysis, the results are back-propagated
onto the original model to assign each component’s failure state to be
reflected in the model. The final failure state at simple and composite
components, as well as at the system level, is reflected when the analy-
sis is done. The system FT 9⃝ and FMEA 8⃝ table can be automatically
generated and analyzed before being sent back to the safety expert
for consultation. If something is wrong, changes can be made before
the final inspection. In the following sections, we briefly review each
step of the supported analysis process. Although the FMEA analysis is
12
Fig. 7. FT meta-model [52].

included in the CHESSIoT safety analysis process, this paper focuses
primarily on the FT-based analysis approach.

3.2.2. Generation of fault-tree models
A fault tree is a graphical representation used in field safety analysis

to analyze and visualize the potential causes of a specific undesired
event. Typically, logical gates, such as AND gates and OR gates, are
used to connect these nodes. The choice of gates depends on the rela-
tionships between the factors. Fig. 7 presents the FT metamodel. During
the CHESSIoTFLA to CHESSIoTFT transformation process, the system
FTs are generated through a series of model-to-model transformations
developed with the Epsilon Transformation Language (ETL) [70]. The
process starts by instantiating many FT objects equal to the number
of failures propagating to the system’s output port(s). At this stage,
each error propagating to the system’s output port(s) is represented
in its corresponding FT. Note that when a ‘‘noFailure’’ condition is
propagated to the output, it is disregarded, indicating that the system
could mitigate such an event.

In the next steps, each FT is built separately and recursively. The
initial action involves the creation of a top event among all. A top
event is generated as a result of the failure propagation to the system
output port. In terms of logic gates used in the FT, only ‘‘AND’’ and
‘‘OR’’ gates are adopted. An AND gate is used to indicate a failure
transformation from one type to the other as it goes from an input
to an output port of a component, while an OR gate depicts a failure
propagation situation in which the same input failure propagated to the
output port without a change in type. This is also the case when one
or more outputs fail from distinct components and are passed to the
input of the following component. An example rule shown in Eq. (3),
a simple component inner failure transformation is presented, where
more than two input failure expressions from distinct input ports (i.e
𝑝(𝑖𝑛1) to 𝑝(𝑖𝑛𝑁)) are transformed to a single failure at the output port
(𝑝(𝑜𝑢𝑡)).

𝑝(𝑖𝑛1).𝑓𝑎𝑖𝑙𝑢𝑟𝑒1,… ., 𝑝(𝑖𝑛𝑁).𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑁 → 𝑝(𝑜𝑢𝑡).𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡); (3)

To better understand the transformation process let us take the rule
in (3) as an example. Fig. 8 illustrates the transformation mapping
mechanism. As demonstrated, each of the output expressions is mapped
to an output event of a logical combination of the input expressions.
Each input expression is mapped to an event and the type of such event
is determined by the expression condition. Furthermore, the logical
‘‘AND’’ gate was used because all of the input failure expressions had
to occur in order to fulfill the failure on the output port.

As a general rule, intermediate events are created and populated
into the FT based on the type of failure expression and the structure
of the component to which they are allocated. The FT population is a
recursive transformation process in which the transformation has access



Journal of Computer Languages 78 (2024) 101254F. Ihirwe et al.
Fig. 8. Expression (3) corresponding tree.

to ports from a component, ports to rules, rules to expressions, and ex-
pressions back to the components. At this point, the only stopping case
is when the transformation encounters an internal or injected failure
case. When the transformation hits a component with no failure behav-
ior set, an underdeveloped event is assigned. Full details of this trans-
formation process with all algorithms involved are available in [71].

3.2.3. Qualitative analysis
The FT qualitative analysis is conducted using an FT2FT model-

to-model transformation (ie: transformation from 9⃝ to 10⃝) in which
new FT representations only include the essential representations. Dur-
ing the qualitative analysis process, actions such as removing inter-
nal component failure propagation and removing external component-
to-component failure propagation representations are performed. In
addition, the process also involves the removal of root cause event
redundancies. For instance, a failure can be initiated from a single
source and pass through different propagation paths until it reaches the
output port(s). If, in all paths, no transformation occurred, then, from
the output failure conditions, only one path is considered, and, from
that path, all intermediate propagation representations are removed
according to the two previous rules.

For example, taking the generated FT branch shown in Fig. 9, the
event 0 is obtained from a logical ‘‘AND’’ output from 3 subsequent
paths, which makes this event a result of a component to component
external transformation. The going doing to a single branch of our
interest, from event 2 with ‘‘omission’’ at the input port to event 1
with ‘‘commission’’ at the output port indicates internal failure trans-
formation. So in such case, event 1 and its following gate are kept
permanently while event 2 is kept temporally for future analysis.
Going down to event 3 with ‘‘omission’’ to 2 with ‘‘omission’’ which
is a component to component failure propagation, so event 3 will be
permanently removed.

Next, we remain with event 4 with ‘‘omission’’ to 2 with ‘‘omission’’
which is propagation as well, so because event 4 is a basic event
so event 2 will be removed instead. Finally, the whole omitted part
of the tree will be substituted by the feed-forward intermediate gate
to enhance the readability of the FT. The final version of the FT is
provided in Fig. 9(b). The internal failure leading to an ‘‘omission’’
at the output port of a given component had transformed into an
‘‘commission’’ at some point in the system, which when combined with
the other two failure sources had to cause a top failure event with an
‘‘omission’’ failure type.

Although the current qualitative analysis does not fully reflect the
calculation of the minimal event sets needed for a system to fail (min-
imal cut-sets [72]), it does provide a much shorter and more readable
FT that still reflects the goal for the analysis.
13
3.2.4. Quantitative analysis
The quantitative probabilistic analysis is meant to calculate the

system-level (top event) failure rate automatically. In the proposed
approach, the user can assign the failure probability rates of the basic
failure events, such as internal failure and injected failure. This infor-
mation can be supplied from the device manufacturer’s data sheet and
the safety experts. The probability calculation follows a widely used
formula for conducting a logical output of an ‘‘AND’’ or an ‘‘OR’’ gates
in the FT [73–75]. The output of an ‘‘AND’’ gate means that the output
event will only happen when a combination of independent events oc-
curs simultaneously. On the other hand, the output of an ‘‘OR’’ gate im-
plies that the output event will occur if any of the input events occurs.

For each FT to be analyzed, the system failure rate (the top event
probability) is calculated following a recursive calculation of the inter-
mediate probabilities to the intermediate events. Based on the proba-
bilities of the basic events, the probability values of their parent event
can be calculated from input event probabilities. Let N be the number
of input events and 𝑃𝑖𝑛 the probability of the input event, the output
probability 𝑃𝑜𝑢𝑡, for both ‘‘AND’’ and ‘‘OR’’ gate types, is calculated as
in Eq. (4):

𝑃𝑜𝑢𝑡 =

{

𝛱𝑁
𝑖𝑛=1𝑃𝑖𝑛 for an 𝐴𝑁𝐷 gate

1 −𝛱𝑖𝑛=1(1 − 𝑃𝑖𝑛) for an 𝑂𝑅 gate
(4)

Note: For more in detail technical presentation of this safety analysis
approach for IoT systems, consider checking our previously published
work in [76]

3.3. Model-based design and development

Software design and development is the process of creating and
implementing software systems and applications. The software design
phase involves creating high-level conceptual models of the system,
identifying key components and interfaces, and defining the overall
software architecture. CHESSIoT follows a multi-view design paradigm,
the software design is done under the ‘‘Component View’’ to enable users
to design functional and behavioral aspects of the software’s edge layer.

In CHESSIoT, the user benefits from a dedicated IoT-specific graph-
ical modeling environment consisting of specific diagrams and palettes
that are hidden or shown based on the current design step via the ‘‘IoT
sub-view’’. Having such a sub-view enables CHESSIoT to be a completely
decoupled environment from CHESS, which is relevant throughout the
whole design process. Fig. 10 shows the support of the complete design
and development phase.

The software development process initiates with the user creat-
ing functional and behavioral models that conform to the software
metamodel shown in Fig. 3. Once the model reaches its final form,
a transformation called CHESSIoT2ThingML is executed to generate
ThingML models. These files can then be utilized within the ThingML
environment to generate platform-specific code that is ready for deploy-
ment on devices. Alternatively, the functional model can be expanded
to incorporate real-time properties, enabling real-time analysis to be
conducted. This section does not delve into the runtime analysis, as
it has already been covered in the work presented in [67]. However,
it does provide specific details regarding the design strategy and code
generation approach supported by the CHESSIoT tool.

3.3.1. Specification of CHESSIoT software models
In CHESSIoT, the modeling of software components is closely in-

tertwined with the definition of their behaviors, ultimately resulting in
the generation of platform-specific code. The software design approach
encompasses both the functional design and behavioral design aspects
of the system. The functional design entails a systematic definition of
the primary software components, their sub-components, and their in-
terconnections. This process employs component structure diagrams that

adhere to a component-to-connector design methodology [10]. During
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Fig. 9. Qualitative transformation example (a) before, (b) after.
Fig. 10. Software development process.

this stage, communication between components is exclusively facili-
tated through dedicated ports utilizing payload entities. For designing
systems that involve wireless communication, such as MQTT-based
systems, a special port with an MQTT stereotype is utilized. This MQTT
port captures all MQTT-related information, including the broker URL,
client type, and topic.

When modeling the internal behavior of a component, internal class
diagrams are used, where only specific palette elements are displayed to
the user at this stage. Each main sub-function of the system is assigned
its own state machine, which encompasses events, actions, and guards
14
associated with states and transitions to achieve the desired behavioral
objective. Fig. 11 presents the high-level mechanisms that are followed
during the definition of the component’s state machine as well as the
event, action semantics definition process. For instance, according to
Fig. 11(a), an event can be categorized as either an Internal event or
a Conditional event. The event references the payload values found at
the corresponding port for verification. When an event is triggered, it
initiates an action, which can be either a SetAction or a GenericAction,
depending on the context.

A SetAction always sends a Payload through a given port, while
a generic action would mostly be customarily implemented. A guard
which enables a state transition based on the OnExit action status or
can be customarily implemented. Such a condition is added to the code
unchanged during the code generation. A combination of such events
and actions is referenced throughout different states and transitions
accordingly. Fig. 11(a) depicts the basic activities that need to be
fulfilled from one state to the other.

Fig. 11(b) depicts the general idea behind the basic state-based
behavior process supported by our approach. The diagram illustrates
an example of two states, i.e., S1 and S2, and the requirements and
activities that must be met to perform the transitions among them.
Moreover, when leaving a state, zero or more OnExit actions might
be fulfilled. This is defined within a state and will be checked using
the guard expression. Conditional events must be attached to state
transitions when moving from one state to another. Furthermore, zero
or more onEntry actions may be performed when entering a state. An
internal event is used within a state to trigger actions of interest. It is
important to note that at this point, a conditional event always inspects
the payload state at the ports to initiate a state change.
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Fig. 11. Behavioral modeling semantics.

3.3.2. The CHESSIoT to ThingML transformation
The CHESSIoT2ThingML transformation process is done through

model-to-model transformations written in Acceleo.10 Acceleo is an
open template-based source code generation technology developed in
the context of the Eclipse Foundation. In this section, we will delve into
the details of ThingML and the steps involved in generating ThingML
models from CHESSIoT models.

What is ThingML? ThingML is a model-driven development and code
generation framework that combines a textual modeling language and
a set of compilers targeting a range of different platforms (from micro-
controllers to servers) to generate ready-to-use platform-specific code.
ThingML code generators support the generation of three main lan-
guages (C/C++, Java, and JavaScript) and several libraries and open
platforms (Arduino, Raspberry Pi, Intel Edison, Linux, and so on) [77].

The ThingML approach targets distributed reactive systems and
is especially beneficial for applications that include heterogeneous
platforms and heterogeneous communication channels. In ThingML, a
Thing is an implementation unit, also referred to as a component or
process. It can define properties, functions, messages, ports, and a set
of state machines [10]. All the properties are local variables and can
be accessed globally from within a thing through a function or a state
machine. Same as properties, the functions are also local to a thing,
and they can be used from anywhere in a thing. Same as CHESSIoT,
things can be interfaced with other things through the ports employing
sending and receiving a set of messages.

The ThingML language relies on two key structures: Thing, which
represents software components, and Configurations, which describe
their interconnection [10]. During the CHESSIoT2ThingML transforma-
tion, the generation of those two main sets of code is done separately,
as described in the next sections. Over the years, the ThingML approach
has continuously evolved and applied to cases in different domains, in-
cluding commercial e-health applications such as fall detection systems
called Safe@Home [77], Micro-aerial vehicle platform as well as the
Arduino Yùn IoT-based projects [10].

CHESSIoT to ThingML transformation: The CHESSIoT component’s
semantics differ from the ThingML, which is why mapping the elements
is needed to solicit an efficient transformation. In the following, we
discuss how the different CHESSIoT modeling constructs contribute

10 https://www.eclipse.org/acceleo/
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Table 3
CHESSIoT2ThingML transformation mapping.
CHESSIoT element ThingML element

VirtualElement, VirtualBoard,
VirtualEntity, Sensor, Actuator

Thing

IoTPort Provided/required port

Component’s property Thing’s property

Component’s operation Thing’s function

Payload Message

Set of Payloads Fragment

IoTState/Transition State/Transition

IoTGuard Guard

IoTEvent/Action Event/Action

to generating target ThingML elements. Table 3 depicts the CHES-
SIoT2ThingML transformation mappings followed by the supported
CHESSIoT to ThingML model transformation. The transformation pro-
cess starts from the top-level where main software components such
as VirtualElement, VirtualBoard, VirtualEntity, Sensor and Actuator as the
main building blocks elements are generated. Each of those components
is mapped to a ThingML thing. Each of these types undergoes a ded-
icated transformation route based on relevant semantics found in the
model and its typical properties to satisfy its existence in the entire
ecosystem.

IoTPorts used to support the communication between two or more
components by exposing or requiring the interfaces from other compo-
nents to be transformed to the required/provided port of a ThingML’s
thing. Deciding on whether a given port is a required port or a provided
port depends on the desired direction of communication, and this is
specified in the CHESSIoT software DSL. The Payload elements that
hold the data to be communicated are mapped to ThingML’s Message
element. During the transformation, all the component’s payloads are
collected and translated into one ThingML’s Fragment. The payload can
have zero or many primitive or derived properties to be defined in a
message. For instance, suppose a component message to be communi-
cated among components contains a string value, an integer, or even an
instance of another payload. In this case, a payload will include three
different attributes, represented as message arguments in ThingML.

The CHESSIoT IoTState elements are mapped to the corresponding
ThingML state elements. The same goes for State transition that are also
mapped to their corresponding ThingML’s state transition provided.
The state-chart transformation process is one of the core and complex
generation processes in the whole transformation process. This process
involves primarily the generation of the internal state behaviors such as
OnEntry action, internal events, and the OnExit actions. Secondly, is the
generation of the state transitions which includes conditional events to
be attached to the state transitions. The guards that are associated with
these transitions are also checked for potential effects and transformed
accordingly.

Once the generation of Things is completed, the final task is to
generate the configuration files, which encompass the instances of
Things and their connections. This process aligns with a component-to-
connector methodology, following the internal structure of the nodes.
The above-mentioned transformation process only occurs when the
corresponding behaviors have been specified and are present in the
CHESSIoT model. For instance, not every system will necessarily have
all three internal state behaviors present at all times. When the trans-
formation finishes, the tool generates CHESSIoT code licenses, the
ThingML dependencies such as ThingML DataTypes, and Times.

3.4. Model-based deployment plan and run-time services provisioning

The deployment plan refers to the steps involved in planning and
implementing the deployment of a software system or application. This

https://www.eclipse.org/acceleo/
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Fig. 12. Deployment design process.

can include identifying and specifying hardware and software require-
ments, determining the most appropriate deployment architecture, and
creating a detailed deployment plan that outlines the specific steps
and resources needed to deploy the system successfully. Docker11 and
Kubernetes12 are two popular technologies used in modern software
development and deployment. While Docker provides containerization
capabilities, Kubernetes is an orchestrator for managing containerized
applications.

Ideally, the software components of a typical IoT system can be
deployed in the Cloud, at the Fog layer, and the Edge of the network.
Designing the deployment plan of such a complex and heterogeneous
system has to consider several aspects and be aware of different satis-
factory requirements [78]. In fact, as in other domains, IoT software
services need to follow a multi-tenant approach in which a single
service instance should be running on the host servers, and that single
instance serves each subscribing customer or cloud tenant [79].

IoT systems interact with humans and are always at the intersection
between human survival, for instance, in the healthcare and transporta-
tion domains. As such, monitoring, reviewing and managing deployed
services is necessary to avoid any operational mistake in the IoT cloud-
based infrastructure. The CHESSIoT deployment environment aims to
support the users in decomposing the IoT system deployment plan and
managing deployed node services at all layers. The overall deployment
design is depicted in Fig. 12. Alongside the design of the deployment
model, the environment also offers support for specifying deployment
rules using textual grammar. This enables the expression of mechanisms
to monitor the life cycle of deployed services through deployment
agents.

This section comprises three parts. First, in Section 3.4.1, we present
the approach for designing the deployment plan. Second, in Sec-
tion 3.4.2, we delve into the design approach for service provisioning.
Finally, in Section 3.4.3, we describe the approach for generating
deployment artifacts.

3.4.1. Deployment plan design
In CHESSIoT, the deployment design showcases the physical hard-

ware architecture for running IoT software services. It links the soft-
ware architecture design to the real system architecture, outlining the
nodes where the software program will be executed. The Deployment

11 https://www.docker.com/
12 https://kubernetes.io/
16
view allows users to break down the inter-dependency between differ-
ent nodes, which may include a machine with one or multiple services
running on it. The goal of this process is to generate ready to be
deployed Docker compose files for each of the machines at a certain
node.

The design process, illustrated in Fig. 12, commences with the user
defining the system’s deployment model. This model, which aligns
with the metamodel discussed in Section 3.1.3, primarily focuses on
the interconnections between computing nodes, machines, and the IoT
services they host. Nodes play a crucial role in the entire design process,
as they not only encompass the computing machines but also bear the
responsibility of hosting deployment agent annotations. The inclusion
of machines in the process serves to enhance the decoupling of how
and where IoT services are deployed.

The definition of the deployment concrete syntax model is achieved
by using the Papyrus modeling editors. A deployment context model
was developed and used to create an IoT-specific deployment editor,
which it easy to define element properties, inter-connection, and their
intra-compositions using a rich editor. The section includes the ele-
ment’s direct representation as a widget and a layout. Depending on
the layer at which a node is, services deployed at the same layer or not
could communicate between themselves. For instance, an MQTT client
running on the device layer need to know the address to which a fog
MQTT server is running to better communicates and vice versa.

The communication relationship between nodes can be explicitly
indicated at the node level as well as down to the service itself. As
previously mentioned, services could have a dependency relationship
between themselves. This relationship is critical when determining the
startup and shutdown dependencies between services. For instance,
when running Apache Kafka in a distributed mode (i.e., with multiple
brokers forming a cluster), ZooKeeper13 is typically required to provide
highly reliable coordination and synchronization for such distributed
systems. In this case, Apache Kafka will have a dependency relationship
to ZooKeeper in the deployment plan model. Hence, during the docker-
compose file generation process a ‘‘depends_on’’ value is used and it
is set to the corresponding service following the service-to-service de-
pendency relationship it applies to (in our previous case ‘‘ZooKeeper’’).
Finally, the service priority property is used when determining the order
in which individual service configurations are generated as well as
their run-time prioritization later in the event of a machine memory
shortage.

3.4.2. Service provisioning design
There are different ways to achieve runtime service provisioning,

one of them is by using containerization technology. Docker and Ku-
bernetes technologies enable users to package an application along
with its dependencies into a container. This containerization approach
facilitates the management of deployment, scalability, and runtime
monitoring of these applications. However, in the present software
deployment landscape, many runtime service provisioning approaches
still rely on workflow-driven methods that utilize scripts and follow
well-defined deployment steps. Mastering multiple deployment lan-
guages can be challenging, and there is a notable issue of tight coupling
between the scripts and the specific deployment environments they are
intended for. But always the question remains ‘‘should the deployment
plan change every time the target environment changes?’’

To address this challenge, the CHESSIoT approach utilizes a model-
driven strategy for handling runtime service provisioning. This involves
the automatic configuration and deployment of software services based
on a pre-defined model. The runtime provisioning notations model
integrates all the essential information about a specific type of action
required at runtime, including its dependencies, requirements, and
configuration settings. This information is presented in the deployment

13 https://zookeeper.apache.org/

https://www.docker.com/
https://kubernetes.io/
https://zookeeper.apache.org/
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Fig. 13. Service provisioning metamodel.

model, which includes nodes, machines, and deployed services. De-
pending on the client’s needs, the model can be translated into any
target configuration language for the desired environment. The abstract
syntax for the service provisioning language is illustrated in Fig. 13.

To support the easy deployment and run-time service provisioning
of the deployed services, CHESSIoT provides a textual grammar to
express the means for monitoring the life-cycle of the deployed con-
tainers. At each node, a deployment plan is annotated, consisting of a
collection of expressions. These expressions take the form of deploy-
ment agents, where each agent specifies a series of one-time actions to
be executed on a remote machine’s configuration. These activities are
aimed at facilitating the deployment and provisioning of services.

As the Agents are attached to the nodes, their expressions are meant
to be directly dependent on the number of machines running at such
nodes, their names as well as their addresses. In practice, a deployment
agent could extend another one to better avoid rewriting rules over and
over in case the same or even with some additional run-time actions are
applied from one machine to the other.

In addition to that, the rules which are meant to express the
runtime actions that are meant to be performed on the machine are
the only target ‘‘services’’ they are intended to support. Please note
that the following rules are intended to support the services that have
been already defined in the previous deployment model as well as
other dependencies or supporting services that could be of interest to
the efficient deployment and runtime service provisioning of a given
system.

An example of run-tine service provisioning definition is depicted in
listing 1. The Create rule takes into account the service name and the
machine name; it is meant to create and install a containerized service
at a given machine server. Start/Stop/Re-start rules are meant to start,
stop, and re-start an already created or existing service, respectively.
The Log rule is intended to capture either the machine logs at which the
target service is deployed or the deployed service logs itself depending
on the developer’s needs. If needed, the location of the log file for the
root directory as well as the filename can be defined. The Re-deploy
rule is intended to recreate and restart a service on a given machine.
The Re-runAgent is meant to re-run all the rules that are encapsulated
in a given agent.
17
DepPlan:Setup{
setup:true

}
DepPlan:Name1
{
re-use-plan:Setup
agent: newAgent1{

Description: " This is a first agent "
RULE:create=> " Service_name " on: "
Machine_name "
RULE:start=> " Service_name " on: " Machine_name "
RULE:log=> " Service_name " log_type: machine
filename: " Filename " location: " Filename "

on: " Machine_name "
}

}
DepPlan:Name2{
agent:newAgent2 {

Description: " This is a second agent "
RULE:stop=> " Service_name " on: " Machine_name "
RULE:re-deploy=> " Service_name "

log_type: machine
}
agent:newAgent3 extends newAgent2{

Description: " This is a third agent "
RULE:log=> " Service_name " log_type:service
filename: " Filename " location: " Location "

on: " Machine_name "
}

}
DepPlan:Name3{
re-use-plan:Name1
agent:newAgent4 {

Description: " This is a fourth agent "
RULE:re-runAgent=> newAgent1
}

}

Listing 1: Run-tine Service provisioning definition example

3.4.3. Deployment artifacts generation
When the whole deployment plan design, as well as its service pro-

vision annotations, are finished, the user can perform the deployment
artifacts generation through a series of model-to-text transformations.
The two main types of transformations take generate different config-
uration files for two main tasks. First, by following the deployment
metamodel presented in Section 3.1.3 and the concepts in Section 3.4.1,
each node is transformed into a series of docker-compose files targeting
each of the machines.

A Docker-Compose file,14 usually named docker-compose.yml, is
used to configure the application’s services, networks, and volumes.
During the transformation process, each machine is allocated its docker-
compose file which contains the docker set-up information of each
service hosted by such machine. Depending on the nature of the service,
another dependency file could be generated and placed in the same
folder to fully satisfy the run-time requirements (e.g., security and
storage).

During the transformation, each service type goes through a sepa-
rate transformation path before being added back to the parent con-
figuration file. For example, if a service is of the type ‘‘Broker’’ and
the anonymous access mode is set to false, different security-related
files such as passwords are generated according to the user definitions.
When the docker-compose configuration files generation is finished, the
next step is to generate the Ansible script based on the service provision
agents specified.

14 https://www.docker.com/

https://www.docker.com/
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Table 4
CHESSIoT2Ansible transformation mapping.
CHESSIoT element Ansible element

DepPlan PlayBook
- Name - PlayBook filename

AbstractAgent Play
- Description - Name

Rule Module
- Name - Name
- Arguments - Arguments (depends on rule)
- MachineName - HostName

- HostAddress (from the inventory)

Set of rules Task

Ansible15 is a powerful, flexible, and user-friendly tool designed for
automating various infrastructure tasks, executing ad hoc commands,
and deploying multitier applications across multiple machines [12].
Its simplicity lies in the usage of human-readable YAML templates,
known as playbooks. With Ansible, users can easily program repetitive
tasks to be executed automatically, without the need for advanced
programming knowledge.

In the right-hand side of Fig. 12, the generation of Ansible scripts in-
volves three main components: set-up scripts, inventory, and playbook
scripts. The set-up scripts are responsible for tasks such as installing and
configuring Docker (if it is not already installed), updating the Ubuntu
system, and performing other necessary setup actions. These scripts are
typically used on cloud nodes. On the fog layer, the set-up process
varies depending on the operating system running on the machines.
Different mechanisms for basic setup and upgrades are employed based
on the specific operating system requirements. The next files to be
generated are inventory files which define the managed nodes to be
automated. The host data from the deployment model are drafted to
create the inventory file. The inventory file is created with groups of
different machines and addresses so that the user can run automation
tasks on multiple hosts at the same time. The creation of the inventory
groups will be based on each deployment agent attached to the node.
The Ansible playbooks are generated next.

Ansible Playbooks are sets of automated operations that need to be
executed by the hosts on a remote server. They use several ‘‘plays’’
to manage multi-machine deployments on one or more hosts. Ansible
Playbooks are frequently used to automate IT infrastructures, including
networks, security systems, operating systems, and Kubernetes plat-
forms. One or more Ansible tasks might be combined to make a play. A
Modules have a specific activity to complete within a task. Each module
contains metadata that identifies the user, the location, and the time
and place at which a task is completed. During the transformation, the
mapping in Table 4 is duly followed.

4. Case study: Home automation system (HAS)

To demonstrate the capabilities of our tool, we conducted a case
study on a Home Automation System (HAS), utilizing both the tool
itself and the methodology described in this paper. In Section 4.1, we
present the safety analysis of the system. Section 4.2 focuses on system
development, specifically addressing the modeling and code generation
aspects. Lastly, in Section 4.3, we discuss the system deployment and
the runtime service provisioning aspects.

The Internet of Things (IoT) has experienced significant market
growth in sectors like industrial automation, healthcare, and trans-
portation. As technological advancements continue to permeate various
aspects of our lives, home automation is gaining increasing attention.
A Home Automation System (HAS) is a technological solution that

15 https://www.ansible.com/
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Fig. 14. Home Automation System.

enables users to remotely control different aspects of their homes,
including lighting, heating, appliances, and security, using smartphones
or other devices. These systems typically combine software and hard-
ware components, such as sensors, to automate various tasks and
functions within the home. While home automation systems primarily
serve energy-saving purposes, some also cater to the needs of elderly
or disabled individuals, facilitating their interaction with home appli-
ances. Fig. 14 provides an overview of the high-level structure of the
system implemented in this study.

With the scenario in mind, we could potentially explain our moti-
vating example:

John is a software engineer and homeowner who works at a bank 40 min
away from his home. John has installed a home automation system to
control his house remotely while he is away for work. His house has many
rooms, but we just consider two for simplicity. The major components he
seeks to automate in a room are an air conditioning unit (AC), a light bulb,
and double-hung windows. This will primarily be dependent on temperature
sensor readings installed in each room, and based on that, the AC should
switch on and off automatically, as will the window open and close down.
Depending on his preferences, he can remotely turn on and off the light
bulb as well as other appliances using his smartphone, regardless of sensor
readings. The system board installed in the room is wirelessly connected to
a RaspberryPi gateway, which interfaces the room system appliances with
his Android phone’s application. Finally, he can use his own PC at work to
remote interface with his home system.

4.1. HAS system modeling and fault-tree analysis

In the Home Automation System (HAS) example mentioned earlier,
a temperature sensor is utilized to collect temperature values within the

https://www.ansible.com/
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Fig. 15. Home automation system model.
home. Based on these readings, the system can automatically perform
certain actions, such as controlling the AC or adjusting the windows.
Additionally, the system allows users to remotely control the light
bulbs and windows regardless of the sensor data. Fig. 15 illustrates the
internal physical architecture of the system. For simplicity, we have
depicted only two rooms and have assumed that the window actuation
is directly connected to the window and represented by the servo
motor. We have not accounted for alternative designs that incorporate
electrical and mechanical configurations that could impact the physical
functionality, such as appliances requiring high power (e.g., window
motors). Such considerations are beyond the scope of this study.

Fig. 15 illustrates the power supply configuration of the system,
where a single battery source supplies power to the two rooms inde-
pendently. The two room components communicate individually with
a central gateway. The server hosts the necessary software services
for data storage, processing, and accessibility by authenticated parties.
Users can access these services remotely through active devices such
as mobile phones or PCs, which display the relevant information on
their screens. In the event of abnormal sensor readings that exceed
or fall below certain thresholds, the system may automatically trigger
actions such as turning on/off the AC or opening/closing the windows.
Moreover, the system should be capable of sending notifications to the
user regarding any unusual room conditions. For example, John can
view the displayed data on his phone or PC and choose to manually
override the system’s decisions by forcibly opening the windows or
turning on the AC, disregarding the sensor readings.

As stated, the above system is vulnerable to several types of fail-
ures, usually generated by the system or caused by the surrounding
environment. It is essential to model the failure behavior of individual
components, which could be used to establish the failure behavior of all
subsystems or a whole system. It is crucial to note that we do not focus
on software-level functional behavior, but rather on hardware failure
behavior that users could understand. To grasp the requirement for the
conducted analysis, let us first review the several top failure scenarios
that we believe could occur at the system’s output port, such as the
phone or the PC.

1. Phone/PC displaying wrong data: this can happen at any time
the data received from the server is wrong with regards to the
actual data to be represented.
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2. Phone/PC is off completely and does not display any data:
this can happen either when the phone or PC does not receive
any data or those entities are faulty.

Fig. 15 depicts the system’s two input ports: inHuman2Phone and
inHuman2PC, corresponding to the mobile phone and PC, respectively.
These ports enable us to simulate the effects of external failures on
the overall system functionality. For example, the inHuman2Phone port
can simulate a scenario where the user mistakenly turns an appli-
ance ‘‘ON/OFF’’ when it is not required. This situation represents a
‘‘commission’’ failure injected externally into the system. Similarly, for
the PC, we simulate a scenario where the user responds to a ‘‘LATE’’
system condition, indicating a ‘‘late’’ failure externally injected into the
system. It is important to note that the consequences of both scenarios
propagate throughout the system and elicit different responses based
on the actual failure behavior of each component they encounter. The
routes of failure propagation are highlighted in pink in Fig. 15

The next step involves deriving the system components’ internal
failure and propagation rules. To determine the failure behavior of each
component, it is necessary to understand their functional behavior.
Let us consider the example of a sensor. A sensor can fail in two
different ways. First, it may completely cease providing data (resulting
in an ‘‘omission’’ at the output port). Alternatively, the sensor may
experience internal failures, such as inaccuracies in the readings or data
values outside the expected range (leading to a ‘‘valueCoarse’’ at the
output port). We can establish distinct failure rules for these scenarios,
as depicted in Eq. (5) and (6), respectively. It is important to note that
the asterisk notation denotes an unknown source of failure in cases
where a component does not possess any input ports. Additionally,
other components like the power battery, gateway, server, ACUnit,
etc., can fail by ceasing to provide power (omission at the outputs). A
comprehensive list of failures and detailed descriptions can be found
in the table set provided in [80].

𝐹𝐿𝐴 ∶ (∗) → 𝑜𝑢𝑡𝑆𝑒𝑛𝑠𝑜𝑟2𝐵𝑜𝑎𝑟𝑑.𝐨𝐦𝐢𝐬𝐬𝐢𝐨𝐧 (5)

𝐹𝐿𝐴 ∶ (∗) → 𝑜𝑢𝑡𝑆𝑒𝑛𝑠𝑜𝑟2𝐵𝑜𝑎𝑟𝑑.𝐯𝐚𝐥𝐮𝐞𝐂𝐨𝐚𝐫𝐬𝐞 (6)

Once the failure behavior specifications of the components are
finalized, the safety expert can assign basic failure probabilities to
aid in quantitative analysis. Determining the failure probability of a
component can be a challenging task. It is recommended to consult
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Fig. 16. Analysis results.
the device manufacturer’s documentation, and industry standards, or
seek advice from device experts. In safety engineering, the device
failure probability is often considered to be extremely low and often
expressed as failures per million (10−6), particularly for individual com-
ponents [81]. To maintain simplicity, we have set a default probability
value of 4 ⋅ 10−5 for all basic failure events. It is important to note
that the Fault Tree Analysis (FTA) can also be applied at the sub-
composite component level, such as the ROOM level. This allows for
investigating the potential impact of failures originating from internal
sub-components, as well as the effects of externally injected failures on
the behavior of internal components.

Upon completing the analysis, fault-tree models are generated based
on the failures that have propagated to the system’s output port. The
analysis results are represented for both the ‘‘ROOM-level’’ and the
‘‘System-level’’ in Fig. 16. In particular, the ‘‘omission’’ and ‘‘value-
Coarse’’ failures have propagated to the system’s outSystemFmPC and
outSystemFmPhone output ports. Furthermore, at the ROOM-level, the
‘‘commission’’ and ‘‘omission’’ failures have propagated to the output
ports of components such as ACUnit, LightBulb, and Window, whereas
the ‘‘commission’’ and ‘‘valueCoarse’’ failures have propagated to the
outRoomData port which sends data to the gateway.

An FT is generated and analyzed accordingly for each analysis result
described above. The two system-level propagated failures match the
two big top failure scenarios described earlier. Figs. 17, 18, and 19,
present generated and analyzed FTs for both at the Room level as well
as at the system level.

Fig. 17 shows an analyzed fault tree in the situation where the
window stops working totally. As can be observed, at the low lever,
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there are three basic events: ‘‘a completely broken board’’, ‘‘a completely
broken sensor’’, and ‘‘an external failure related to the battery, for example,
a drained battery’’. Based on the shown fault tree in Fig. 17, the three
basic events are fed into an ‘‘OR’’ gate, which means that if any of
them occurs, it will flow directly through the gate. As the simulation
evolves, the resulting intermediate event is OR’ed with the‘‘window
servo broken completely’’ internal failure resulting in the undesired top
failure. Eventually, one of the four basic failures will directly propagate
to the output port.

Overall, the top-level undesired event probability for such a sce-
nario is estimated to be 1.2 ⋅ 10−4. Because the scope of the room is
substantially smaller than that of the system, the external event, in this
case resulted from the injected failure from the battery port and was
assigned a probability of zero. This may appear irrational, however,
to obtain the probability values of such an event, the entire system’s
probability must first be computed and then assign the corresponding
probability value to such an event. We plan to tackle this issue in the
future.

In Fig. 18, we present another example of a room-level Fault Tree
(FT) that illustrates an event where the ACUnit unexpectedly switches
on and off, resulting in a ‘‘commission’’ failure at the ACUnit’s output
port. The diagram includes two external events: one located at the
bottom right, representing an external ‘‘valueSubtle’’ failure injected
from the outside due to a late reaction from the PC, and another event
in the middle-left depicting the user pressing the commanding button
when it is not needed. Both scenarios elicit different responses from
the system. It is important to note again that the two external events
labeled as injected failure events are beyond the scope of the current
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Fig. 17. Room-level FT diagram: Window not working (omission at the window output
port).

analysis context, and thus no probability can be assigned to them at
this stage.

Finally, at the system level, we discuss the fault tree depicted in
Fig. 19. It shows the fault tree in which the ‘‘Mobile phone displays
erroneous data’’, inferring a ‘‘valueCoarse’’ failure propagating at the
output port. In this situation, the two rooms will have equal control
over whether the data on the display is totally incorrect. Two rooms in
the tree have the same sub-tree since they are from the same instance,
and their failure outcomes are joined by a ‘‘AND’’ gate. According to
the above tree, erroneous sensor data in an event with a late reaction
from the user PC will permit erroneous data to propagate up the tree.
The event in which the ‘‘Board is failing and sent inaccurate data’’ will
also play a role in the loop.

Maintaining coherence between the system and the safety model
can be challenging when the model grows in size and complexity.
Having a framework that can automate the safety analysis process by
allowing the safety expert and the IoT engineer to work on the same
problem from the same unique environment can potentially improve
transparency while significantly reducing the time required to perform
such rigorous analysis tasks. Based on the previous findings, we discuss
the feasibility of establishing a collaborative analysis mechanism in
which both parties collaborate to keep the system and safety model
up to date, thereby improving consistency throughout the process.

4.2. Software design and development

The software development approach supported by CHESSIoT en-
compasses the functional and behavioral design aspects of the system,
along with code generation, with a specific emphasis on the edge layer.
These aspects are described in detail in Section 3.3. In this section, we
will primarily focus on the Room level, providing models for the func-
tional and behavioral aspects of its sub-components: the Temperature
sensor, ACUnit, Bulb, and WindowServo. To maintain continuity with our
previous system-level model, which is presented in Fig. 15, we refer to
it as a point of reference.
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Fig. 18. Room-level FT diagram: ACUnit turn on and off when not expected.

4.2.1. Behavior modeling
The internal component model representation of the room is de-

picted in Fig. 20. This model illustrates the structure and interactions
of the sub-components within the room, offering insights into their
functionalities and behaviors. As shown in the figure, communication
between components is accomplished by sending and receiving payload
messages over provided and required ports. A set of payloads initiated
by each component is created internally, and a pin number is specified
for each port of the actuating or sensing component to be connected to
the board. For instance, two payloads (i.e., ON/OFF or OPEN/CLOSE)
are defined for each actuating component, namely ACUnit, LightBulb,
and WindowServo, to be used when communicating with the board.
Furthermore, the generic actions that are fired were defined internally
to set the associated pins HIGH or LOW accordingly. Furthermore,
internal events are initiated for each component to determine whether
there is a received actuating payload from the board via the dedicated
port.

Each component is associated with its respective state machine.
The working principle of actuating components is to react on a source
of electric energy received to move or change the physical state of
something. From that, each actuating component state machine has
been assigned a single state. In this case, it waits for the board’s
command and reacts accordingly using the previously defined actions.
A sensor, on the other hand, has a state called ‘‘Sensing’’ in which it
constantly monitors the ‘‘readSensor’’ communication payload from the
board to sense the temperature and send a new payload ‘‘sensorData’’
the board through the same port (Fig. 20).

The board serves as a central computing component in the process,
coordinating all connected elements by reusing previously defined
actions, payload, and guards. Fig. 21 shows a partial caption of the
inner events and guard defined within the board. As we can see, only
the necessary internal events, such as checking if the sensor data has
arrived to send the ON/OFF commands to the appliance (i.e HighSen-
sorDataReceived and LowerSensorDataReceived), as well as conditional
events (i.e: High_to_low and Low_to_high and transition guards ValueLow
and ValueHigh) to be fulfilled accordingly when transiting from one
state to the other.

As we can see from the board state machine Fig. 22, three main
states are defined, namely ‘‘IDLE ’’, ‘‘AC_OFFBulbOFFWindowClose’’ as
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Fig. 19. System-level FT diagram: Mobile phone displays inaccurate data scenario.
well as the ‘‘AC_ONBulbONWindowOpen’’ states are defined to control
the basic behavior of the board. In each of the two main states,
the internal event internal events such as HighSensorDataReceived and
LowerSensorDataReceived are used to send trigger the ON/OFF actions
accordingly refer to Fig. 21. Coming from the ‘‘IDLE’’ state, the tran-
sition from the ‘‘AC_OFFBulbOFFWindowClose’’ state to the following
‘‘AC_ONBulbONWindowOpen’’ state happens when the conditional event
check is confirmed (i.e: we are still getting the payload being sent
at the sensor port) as well as the guard condition is fulfilled (in our
case we choose to go for a temperature of 30 degree Celsius as a
threshold).
22
4.2.2. Code generation
When the functional and behavior modeling is done, the CHES-

SIoT2ThingML transformation is launched to generate the ThingML
models ready to be compiled in the ThingML environment for gen-
erating platform-specific code. The transformation process follows the
mapping presented in 3. Fig. 23 depicts the structure of the generated
ThingML models infrastructure. During the transformation process,
each of the Room’s sub-component is transformed into its unique
ThingML model. Furthermore, the utility files such as license files
as well as the global data types and timing messages are generated
separately.
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Fig. 20. Room internal composite structure.

Fig. 21. Portion of the Board event, action, guard specification.

Fig. 22. Board state machine.

Fig. 24 depicts the generated ThingML model of the board mapped
back to the state machine diagram presented in Fig. 22. As we can see
from Fig. 23, the ThingML model associated with the board model is
generated in the parent folder of the Room and it imports all of its
connected siblings. This gives the board the possibility to have access
to the message of all the other components. For instance, at this level,
the board can use its port to send and receive payloads from other
components through its required ports. Each of the states indicated in
the state machine diagram is converted into a ThingML thing’s state
with all its internal actions and events transformed accordingly.

Upon executing the transformation process, the code generator gen-
erates the configuration code, adhering to a component-to-connector
architecture [10] that aligns with the Room’s internal structure. As
depicted in the bottom-left section of Fig. 24, the configuration code
instantiates all components as ThingML objects. From there, internal
connections are established by linking the corresponding ports of these
23
Fig. 23. Generated ThingML models.

objects. Additionally, the properties of each Thing object are set to their
original values as specified in their respective Things.

The current CHESSIoT2ThingML transformation implementation
supports only ThingML models compiled into Arduino code. From
there, the models could be successfully translated into Arduino code
ready to be deployed on IoT devices. To validate the generated code,
we have successfully deployed the generated code without any single
change in the same project designed in the Proteus Simulation soft-
ware16 and the code worked perfectly as expected. The full example
with all the materials is online available at https://github.com/fihirwe/
HomeAutomationSystem.git

4.3. Deployment and service provisioning

In this section, we cover the ‘‘Home Automation System’’ deploy-
ment designs as well as the deployment artifact generation aspects.

4.3.1. HAS deployment plan design
As we described above, the HAS system involves the code running at

all layers, namely the edge device, i.e., Arduino, and the mobile phone,
at the Fog, i.e, a RasberryPi running the MQTT broker, as well as the on
the cloud i.e-, a web server running a Node-RED dashboard instance.
Fig. 25 shows the deployment model of the system. As can be seen, all
three main node layers are present, namely ‘‘DeviceNode’’, ‘‘FogNode’’,
and ‘‘CloudNode’’ reflecting the level of computation involved other
than the device layer.

At the edge layer, two machines are defined namely to reflect the
generated Arduino code running at the Arduino micro-controller as
well as the Mobile-Phone as a machine running the Android app. The
deployment at this layer is done manually and for now, no automation
is provided. This is mainly due to the computing limitation presented
by such chosen deployment platform for this example. At the FogNode,
one machine running a Raspbian operating system was chosen to host
the MQTT broker, which receives the communication from the edge
layer (i.e., the Android app as well as the system code running on the
Arduino code which publishes/subscribes messages to it).

As shown in Fig. 25, the Broker allows anonymous connections, so
no username and password are needed to be created for such a server.
Furthermore, the service priority property at this stage does not matter
because we have only one service running on such a machine. This is

16 https://www.labcenter.com/

https://github.com/fihirwe/HomeAutomationSystem.git
https://github.com/fihirwe/HomeAutomationSystem.git
https://github.com/fihirwe/HomeAutomationSystem.git
https://www.labcenter.com/
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Fig. 24. Generated Board’s ThingML model mapped to the state machine diagram.
Fig. 25. HAS system deployment plan.

typically used as a priority reference during the run-time management
24
of services as a given machine. The persistence is set to true in which,
during the transformation, the default Eclipse-Mosquitto broker persis-
tence directories are chosen by default. Finally, at the cloud layer, one
Ubuntu-based machine is used to host both the Node-RED dashboard
instance.

During the transformation process, a docker-compose file is gener-
ated for each machine at any layer. These docker-compose files contain
the necessary information for hosting the services on each machine.
However, due to missing information and service incompatibility at
the Device layer, the generated docker-compose file in this case is
incomplete and cannot be used. For illustration purposes, the generated
docker-compose file at the Fog layer is presented in Fig. 26.

4.3.2. HAS runtime service provisioning
As shown in the deployment plan model in Fig. 25, the FogNode

and the CloudNode elements are annotated with their corresponding
FogDepAgent and CloudDepAgent, respectively. These annotations en-
able the definition of runtime deployment rules associated with the
runtime management of the services deployed at each of the machines
running at the node.

In Fig. 27, we present an example of agent rules defined at the edge
node. The provided agent includes four distinct deployment plans. The
first plan, known as the setup plan, is responsible for installing all the
necessary dependencies on the target machine. This setup plan is highly
dependent on the specific target host, and the actual setup tasks will be
defined accordingly.

Furthermore, the ‘‘installServiceOnFogMachine’’ plan will create and
install the MQTT broker instance at the target fog machine. In addition
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Fig. 26. Generated deployment configuration Fog.

Fig. 27. FogDepAgent rules.

to that, on the next plan, a ‘‘StartMQTTBroker’’ plan is defined to start
and save the broker logs in the file with the name specified. By default,
such a file will be located in the root folder of the machine server. The
log type in this case is set to service to limit the logging to the Service
log, not the machine host in which the broker is running. Note that
during the transformation process, each of the ‘‘DepPlan’’ is translated
into the corresponding playbook with its corresponding name. At this
stage, the playbook can be used and launched separately depending on
the user’s need (see Fig. 26).

5. Evaluation

In Section 2, we provided an overview of existing related ap-
proaches for engineering IoT systems covering the design, analysis, and
development of IoT systems. These approaches covered categories such
as modeling and development, safety analysis, and deployment support.
In this section, we present an evaluation of the proposed approach
compared to existing techniques thereby emphasizing the need for a
novel approach like CHESSIoT. Furthermore, a qualitative analysis has
been also conducted to evaluate the completeness of CHESSIoT based
on the MMQEF [21] approach

To discuss the strengths and limitations of CHESSIoT, we targeted
a number of essential research questions as presented in Section 5.1.
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Section 5.2 presents an overview of the analyzed primary approaches,
whereas Section 5.3 presents the comparative assessment related to the
tools’ capability of supporting different modeling features in achieving
a multi-layered architecture. To be more specific, this part looks at the
tools support for modeling application entities across all layers, namely
the low-level edge layer, fog, and cloud layers elements. Additionally,
in Section 5.4, existing tools are discussed and compared with respect
to their support for different IoT engineering tasks, including system
development, safety analysis, deployment, and run-time service provi-
sioning. Furthermore, Section Section 5.5 presents the results from a
qualitative analysis based on the MMQEF framework while Section 5.6
presents the proposed approach threat to validity.

5.1. Research questions

1. RQ1: How does the proposed modeling infrastructure and ap-
proach compare to other tools for modeling IoT systems?
With this research question, we aim at examining the various model-
ing functionalities provided by CHESSIoT against the ones provided
by other selected tools currently on the market.

2. RQ2: How does the proposed approach address system engineer-
ing tasks such as IoT system development, safety analysis, and
deployment?
With this research question, we want to see how CHESSIoT dis-
tinguishes itself from other existing engineering tools to facilitate
early safety analysis, development with code generation support, and
deployment with runtime service provisioning support.

3. RQ3: How does the proposed CHESSIoT DSL, as well as the
supporting environment, qualitatively enhance the development
of IoT systems?
In this research question, we are interested in investigating the effi-
ciency of CHESSIoT in terms of usability, completeness, and modeling
coverage from various viewpoints.

5.2. Selected platforms

Table 5 lists the 12 approaches, which have been selected according
to the following criteria:

• Basic support for IoT system modeling: The approach focuses on
modeling IoT systems and may provide advanced features for
manipulating the model.

• Tool maturity: The approach has advanced beyond its initial or
conceptual stages and is more mature.

• Age of the tool: The approach has been implemented within the
last 10 years.

• IoT-specific: The approach is explicitly designed for engineering
in the IoT domain.

5.3. Supporting the modeling of IoT systems (answer to RQ1)

This section presents the comparative analysis of the considered
approaches in terms of their abilities to model application entities
across all layers of a typical IoT system (see Table 6). Our evaluation
criteria aim at identifying tools that can effectively model all aspects of
an IoT system, from the low-level edge layer to the fog and cloud layers,
while maintaining consistency throughout the process. To achieve this,
we broke down each layer into more detailed elements. For instance,
at the edge layer, we considered modeling node elements such as
sensor/actuators, their functionality and behavior, and hardware mod-
eling. We also evaluated support for wireless communication modeling,
which we believe is crucial for enabling access to data generated by
physical devices and making the edge layer system operational in the
digital world.
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Table 5
Selected approaches for the comparative analysis.
Tool name Title Year Type

MontiThings [20] MontiThings: Model-driven development and deployment of reliable IoT applications 2021 Journal

ThingML [10] ThingML: A language and code generation framework for heterogeneous targets 2016 Conference

MDE4IoT [17] MDE4IoT: Supporting the Internet of Things with model-driven engineering 2017 Conference

SysML4IoT [24] Modeling IoT applications with SysML4IoT 2016 Conference

Monitor-IoT [44] A domain-specific language for modeling IoT system architectures that support
monitoring

2022 Journal

Simulate-IoT [19] Simulate-IoT: Domain-specific language to design, code generation and execute IoT
simulation environments

2021 Journal

DSL-4-IoT [5] Design of a domain-specific language and IDE for Internet of Things applications 2015 Conference

UML4IoT [27] UML4IoT-A UML-based approach to exploit IoT in Cyber-Physical manufacturing
systems

2016 Journal

IoT-ML/ BRAINIoT [29] BRAIN-IoT: Model-based framework for dependable sensing and actuation in
intelligent decentralized IoT systems

2019 Conference

CAPS [31] CAPS: Architecture description of situational aware Cyber-Physical systems 2017 Conference

Node-RED [23] Node-RED: Low-code programming for event-driven applications 2016 Open tool

Silva I. et al. [46] A dependability evaluation tool for the Internet of Things 2013 Journal
In the fog layer, we evaluated the tools’ support for various fog
omponents such as fog devices, gateways, and fog servers. Similarly,
or the cloud layer, we assessed the modeling capabilities of the tools
or cloud-based elements like cloud nodes, machines, and services. We
lso investigated if the tools support multi-view modeling and if they
ome with a graphical user interface. Additionally, we acknowledged
hat some tools may have unique modeling capabilities that may not
e captured in the checklist, so we added a column to highlight any
dditional features.

The comparative findings from the assessment presented in Ta-
le 6 are highlighted below relative to CHESSIoT-supported modeling
eatures that will be presented with details in the next section:

1. From Table 6, it can be seen that all of the selected platforms
provide a modeling environment, with most of them offering a
graphical modeling option, except for ThingML [10], which only
offers a textual modeling option. While textual-based approaches
may be more scalable, graphical ones are usually more accessible
and user-friendly. Textual interfaces can become overwhelming,
particularly when the system becomes more complex, and can
often come with a learning curve in terms of understanding new
textual languages. Similar to MontiThing [20], CHESSIoT has
adopted an approach that integrates both textual and graphical
modeling approaches, limiting the use of the textual interface
to simple definition tasks such as failure logic behavior rule
annotation and run-time service provisioning, while major and
complex system modeling is supported graphically.

2. After analyzing the selected approaches, it is evident that a
considerable number of them do not support the multi-view
modeling approach. This modeling approach is crucial in im-
proving the accuracy of system design and enforcing the sepa-
ration of concerns, where the model is simplified and designed
from various perspectives. Multi-view modeling generally com-
plements component-based design [83], which is also supported
by CHESSIoT. These two methodologies have tremendous poten-
tial in dealing with the complexities of IoT systems. Among the
12 considered tools, only MDE4IoT [17], SysML4IoT [24], and
CAPS [31] platforms provide support for these methodologies.
We acknowledge that there are other platforms that implement
alternative approaches that might complement multi-view mod-
eling depending on the modeling context supported by the tool.
For example, Node-RED [23] supports a multi-flow modeling
approach, allowing different parts of the system to be developed
separately from various flows while still sharing a common
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development context. However, Node-RED practically supports
only a single data view that is shared among different flows, and
other views are not supported. Therefore, it may not be suitable
for more complex IoT systems that require multiple perspectives
and separation of concerns.

3. As it can be seen from Table 6, the majority of approaches sup-
port modeling at the edge layer elements, namely components
such as sensors/actuators, computing boards, and so on [17,
20,23,44,82]. Except for IoT-ML [29], which exclusively fo-
cuses on the functional aspects targeting cloud-based resource
allocation, other platforms offer even more advanced design
mechanisms, such as run-time self-adaptation [17,82] as well as
runtime error handling capabilities [20,44] at the edge. While
technically allowing predefined functional node behaviors to be
defined, Node-RED [23] can model the data processing logic
of the device-layer elements; however, it does not explicitly
support any form of out-of-loop logical behavior specification.
CHESSIoT, on the other hand, combines both functional and
behavioral modeling of the element at the edge, and through
different modeling views, a model portion can then be used for
different engineering purposes.
In addition to that, CHESSIoT can explicitly model wirelessly
communicated ports that support the MQTT protocol [84]. We
have stressed this necessity as an essential factor in making
the device layer components alive and suitable to be integrated
into the digital world. Eight out of eleven platforms support
this feature, which is very promising evidence of how ma-
ture MDE approaches are ready to address the scalability and
interoperability issues faced in the IoT field.

4. Analysis of the table reveals that only a few of the considered
platforms, namely [19,23,44,46], support the modeling of fog
layer elements. This lack of support for fog layer modeling is
a significant limitation and is frequently cited as one of the
drawbacks of MDE approaches in IoT. In our experience, IoT
language developers tend to prioritize device-level modeling and
development over the fog layer, even though implementing a
robust code generator capable of generating fully integrated fog-
layer code is a complex task due to the required designs and
heterogeneity. Nevertheless, we believe that considering the fog
layer is crucial for realizing a fully functional IoT system. While
CHESSIoT does not explicitly focus on fog-layer code generation,
our approach does provide deployment modeling and artifact
generation targeting fog-layer deployment.

5. In the realm of cloud-layer modeling support, it is apparent
from the table that only IoT-ML [18] and SimulateIoT [19] offer

complete support for cloud-based design. IoT-ML is specifically
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Table 6
Comparative table on supporting different IoT modeling features.

Tool Graphical
user

Multi-view
modeling

Edge layer Fog layer Cloud layer Other supported
modeling capabilities

interface Device
node

Func-
tional
design

Behav-
ior
design

Hard-
ware
design

Wireless
support

Fog
node

Fog
device

Fog
gateway

Fog
server

Cloud
node

Cloud
machine

Services

MontiThings
[20]

Yes No Yes Yes Yes Yes Yes No No No No No No No Error handling design
capabilities,
deployment planning,
featuring deployment
design suggestions

ThingML [10] No No Yes Yes Yes No Yes No No No No No No No Textual Component
and Connector
architectures,
asynchronous
messaging

MDE4IoT
[17]

Yes Yes Yes Yes Yes Yes No No No No No No No No Software to hardware
allocations, consistency
assurance, and
run-time self-adaptation
design

SysML4IoT
[24,25,82]

Yes Yes Yes Yes Yes Yes No No No No No No No No System quality of
service (QoS),
Publish/subscribe
paradigm, system’s
self-adaptive designs

Monitor-IoT
[44]

Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Synchronous and
asynchronous dataflows
design across the edge,
fog, and cloud layers
to support the
monitoring.

Simulate-IoT
[19]

Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Database designs,
wireless sensors and
actuator network
(WSAN) design support

DSL-4-IoT [5] Yes No Yes Yes Yes Yes Yes No No No No No No No A visual domains
specific modeling
language for modeling
IoT wireless sensor
network

UML4IoT
[27]

Yes No Yes Yes Yes Yes Yes No No No No No No No Source code level
annotations in case the
UML design
specification is not
available

IoT-ML/
BRAINIoT
[18,29]

Yes No Yes Yes No No No No No No No Yes Yes Yes Run-time system
deployment and
dynamic remote
edge/cloud
reconfiguration designs

CAPS [31,32] Yes Yes Yes Yes Yes Yes No No No No No No No No Physical space view
modeling to describe
the area involved in
situation awareness

Node-RED
[23]

Yes No Yes Yes No No Yes Yes Yes Yes Yes No No Yes Cloud-based data flow
modeling. Wiring
together pieces of code
blocks to carry out
tasks.

Silva I. et al.
[46]

Yes No No No No No No Yes Yes Yes Yes No No No Modeling of IoT
network layer as a
graph of devices
(vertices) and edges
(links).

CHESSIoT Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Support for the design
of system failure logic
behavior as well as
run-time service
provisioning
designed to enable run-time system deployment modeling and
dynamic remote edge/cloud reconfiguration, while SimulateIoT
provides an IoT simulation and execution environment. This
highlights the same issue discussed earlier, namely that most ap-
proaches concentrate on low-level development at the expense of
other layers. For instance, Node-RED [23] and MonitorIoT [44]
focus on service-oriented modeling while ignoring the context in
which such services are deployed. In contrast, CHESSIoT enables
the modeling of inter-dependencies between different nodes,
machines, and services, and facilitates the provision of services
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deployed on such nodes across all layers.
5.4. Supporting the engineering of IoT systems (answer to RQ2)

In this section, we evaluate the selected IoT approaches based
on their ability to support various engineering tasks in developing,
analyzing, and deploying IoT systems. Table 7 shows our investigation
of whether a platform follows a well-structured development approach
that integrates all its supported engineering tasks and how these tasks
are emphasized and followed during the entire process. Specifically,
we looked at the tool’s capability to generate platform-specific code

for development and assessed its support for safety analysis and other



Journal of Computer Languages 78 (2024) 101254F. Ihirwe et al.
Table 7
Comparative table on supporting different IoT engineering capabilities.

Tool Following a well Development Analysis Deployment Empirical assessment

defined engineering
methodology

Generate code Safety
analysis

Others Generate
config.

Service
provision

Approach Tool’s specific focus

MontiThings
[20]

Yes Yes No No Yes Yes Proof of concept and
a case study

Engineering reliable IoT systems by
separating concerns, handling errors,
and enabling deployment to
heterogeneous edge devices.

ThingML
[10]

Yes Yes No No No No Proof of concept and
a case study

A modeling tool and a highly
customizable multi-platform code
generator targeting only the edge layer

MDE4IoT
[17]

Yes Yes No No No No Case study Support design, development, and
run-time management of IoT systems

SysML4IoT
[24,25,82]

Yes Yes No System
QoS

No No Proof of concept and
a case study

System functional design,
publish/subscribe and self-adaptations
at the edge.

Monitor-IoT
[44]

Yes No No No No No Proof of concept, case
study, and
experimental results

Multi-layer visual modeling language
for monitoring architectures of IoT
systems based on the
ISO/IEC30141:2018 reference
architecture.a

Simulate-IoT
[19]

Yes Yes No No Yes Yes Proof of concept and
a case study

Define an IoT simulation environment
and execute it. Support for databases,
complex-event processing engines, or
message brokers

DSL-4-IoT
[5]

No No No No Yes No Case study A high-level visual programming
language tailored to develop IoT
applications compatible with the
OpenHAB framework.

UML4IoT
[27]

No Yes No No No No Proof of concept and
experiment

IoT environment to support in the
integration of CPS components into
modern IoT manufacturing
environment.

IoT-ML/
BRAINIoT
[18,29]

Yes Yes No Risk
analysis

Yes Yes Proof of concept Edge/cloud deployment marketplace.
Orchestration of distributed IoT systems
leveraging dynamic and heterogeneous
designs

CAPS
[31,32]

Yes Yes No No No No Proof of concept and
a case study

A multi-view modeling approach that
uses ThingML for code generation at
the edge/device layer.

Node-RED
[23]

Yes No No No No Yes Well established tool Multi-flow based development
approach. Acts as an interpreter for the
data flow-related aspect of the system.

Silva I. et al.
[46]

No No Yes No No No Proof of concept and
experiment

A dependability evaluation tool for IoT
that considers hardware faults and
permanent link faults performing safety
analyses and generating system FTs

CHESSIoT Yes Yes Yes Existing
real-time

Yes Yes Proof of concept and
a case study

Multi-layered system and software
design, code generation, safety analysis,
and deployment for IoT systems within
a unified platform.

a https://www.iso.org/standard/65695.html.
types of analysis. Regarding deployment, we focused on the platform’s
ability to generate deployment-related artifacts and support run-time
service provisioning mechanisms. Additionally, we highlighted each
approach’s specific focus and the typical validation methodology used.
We acknowledge that safety-related analysis is not the only important
aspect of IoT systems, and we also considered other types of analysis
that are supported by each platform.

The results of the assessment are summarized in Table 7. Based on
these results, we can highlight several interesting findings related to
the engineering support provided by CHESSIoT, which is presented in
the next section.

1. Table 7 shows that three of the considered approaches, namely
[5,27,46], do not provide any details on the supported engi-
neering methodology throughout their development process. We
strongly believe that engineering platforms should have a well-
defined methodology that guides the development process of IoT
28
systems. Such a methodology can potentially reduce complexity
and provide users with fewer complications while using the
platform. On the other hand, as shown in Fig. 1, CHESSIoT
offers a well-defined component-based design approach that
supports different engineering tasks, such as code generation,
safety analysis, and deployment, at different stages of the design
and through different viewpoints. This approach enhances the
tool’s suitability and significantly contributes to the model’s
correctness throughout all engineering stages.

2. In terms of code generation, three platforms — MonitorIoT [44],
DSL-4-IoT [5], and Node-RED [23] - do not support any form of
code generation that can be deployed on IoT devices. However,
one of the main goals of Model-Driven Engineering (MDE) is
to enhance automation in the development process [22]. We
believe that generating partial or full system code is one of the
most critical factors in speeding up the development process.
While we recognize the complexities involved in generating fully

https://www.iso.org/standard/65695.html
https://www.iso.org/standard/65695.html
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functional code that can be deployed at any layer without man-
ual intervention, continuous improvement of code generators
that attempt to cover the different heterogeneous aspects of an
IoT system could help bridge this gap.
ThingML is a platform that provides a code generator capable
of producing fully functional code in various programming lan-
guages, such as Java, C, C++, JavaScript, Python, and Go, with
a particular focus on the edge layer. While the number of sup-
ported languages may vary depending on the ThingML version
and code generator, additional languages can be integrated by
implementing new code generators or expanding existing ones.
To save time and resources, CHESSIoT uses ThingML code gen-
eration infrastructure. This is done by transforming CHESSIoT’s
software models into ThingML models. More information will be
provided in Section 3.3.

3. Developers of IoT systems often assume that their devices or
systems will always succeed, but this is not the case [85].
Failures can occur for various reasons, including device age,
communication protocols, data sources, deployment environ-
ment, and human error. In our assessment of 12 platforms, we
found that only Silva I. et al.’s approach [46] supports safety
analysis through Fault-Tree. However, even this approach only
analyzes the fog layer network, which is only a small part of the
overall functionality of an IoT system. It is important to note that
safety requirements for IoT systems are still emerging and do not
always keep up with changing technologies [74]. Many safety
analysis approaches presented in Section 2.2 are conceptual and
do not support automated fault-tree analysis.
In addition to safety analysis, we discovered that only two out
of 12 platforms we examined offer different types of analy-
sis. SysML4IoT [25] supports reliability analysis of IoT systems
through verification of the system’s QoS properties, while the
BRAINIoT platform [18] uses IoT-ML [29] to support security
and privacy risk analysis through a decentralized process that
ranks vulnerabilities into four levels: negligible, limited, signifi-
cant, and maximum. This is a significant engineering challenge
in the IoT field.
To enhance the capabilities of CHESSIoT models, additional
analyses can be performed using the underlying CHESS infras-
tructure [8] on which the platform is built. For example, in
previous research [67,86], we showed how timing characteris-
tics could be added to CHESSIoT functional models to conduct
real-time schedulability analyses.

4. When it comes to deployment support, MontiThings and Simu-
lateIoT have different approaches. MontiThings uses a deploy-
ment manager to capture device states at runtime, generate a
valid docker-compose.yml, and send it to devices for execu-
tion. SimulateIoT, on the other hand, utilizes Docker swarm to
manage deployed docker containers across all node layers. Only
four of the twelve platforms examined offer runtime deployment
artifact generation or service monitoring. However, CHESSIoT
provides an environment that allows for the modeling and gen-
eration of docker-compose files reflecting services that need to
be deployed on machines running at a given node.

Referring to Table 6, our focus was on assessing the platform’s
ability to provide a multi-layered modeling environment and offer en-
gineering support in terms of development, analysis, and deployments.
From the results, it is clear that out of the 154 feasible possibilities
(excluding the CHESSIoT row), 80 possibilities were supported, while
74 remained unsupported. This translates to an average gap of 48.08%.
On the other hand, in terms of IoT engineering support ( Table 7), out of
the 66 possible points, only 26 were supported, leaving 40 unsupported,
resulting in a gap of 60.6%. Fig. 28 provides an overview of the study’s
outcomes, displaying the percentage of supporting and non-supporting
aspects in both contexts.
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Fig. 28. Overall comparative supporting results.

Based on Fig. 28, it appears that if we take into account both the
non-supporting aspects related to modeling and engineering, CHESSIoT
has the potential to contribute to a gap of around 54.34%. However,
it is worth noting that while SimulateIoT [19] is the best-performing
platform in terms of supporting 13 out of 14 basic modeling features,
it lacks certain features that are supported by CHESSIoT, such as
multi-view modeling, system failure logic design, and run-time service
provisioning design. It may not be possible for CHESSIoT to include all
the platform-specific modeling capabilities of other platforms, but the
platform’s flexibility and customizability means that relevant modeling
features could potentially be integrated in the future.

One notable gap in the analyzed IoT platforms is their performance
in IoT system analysis, including verification, validation, and analy-
sis of IoT systems under development [67]. Due to the complexity
and scale of IoT systems, physical replication, and testing become
challenging [87]. The lack of standardized realistic reference mod-
els that accurately capture the interactions between sensors, apps,
and actuators further exacerbates the issue. CHESSIoT addresses this
by extending models with extra-functional properties and supporting
analysis capabilities, as demonstrated in previous work on real-time
schedulability analysis [67,86].

5.5. CHESSIoT qualitative evaluation (answer to RQ 3)

5.5.1. What is MMQEF?
To perform the qualitative evaluation of our approach we adopted

the Multiple Modeling Quality Evaluation Framework method
(MMQEF) [21]. MMQEF provides a methodological and technological
framework for evaluating quality issues in modeling languages by the
application of taxonomic analysis. According to [21], the software qual-
ity of a modeling language in MDE could be defined as the degree to
which such modeling language (with its artifacts) meets an Information
System (IS) concern. This also considers the artifact’s location inside
an abstraction level with a clear purpose (or viewpoint) and explicit
traceability for deriving technical implementations.

In order to evaluate modeling languages in a qualitative manner
using the MMEQF approach, it is necessary to establish different taxo-
nomic constructs, based on the level of abstraction at which the analysis
needs to be performed and the viewpoints from which it has to be ap-
proached. For instance, the MMEQF approach considers different levels
of abstraction, starting from the organization level and proceeding to
the specific computational implementation. In MDE, this is referred to
as the Computation-Independent Model (CIM), the Platform Indepen-
dent Model (PIM), and the Platform-Specific Model (PSM), which later
generates code artifacts. With regard to the analysis viewpoints, the
approach defines different modeling purposes by asking questions such
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Table 8
Taxonomic analysis of the CHESSIoT modeling infrastructure.
Abstraction level WHAT

(Things)
HOW
(Behavior)

WHERE
(Location)

WHO
(People)

WHEN
(Time)

WHY
(Motivation)

System-level
modeling
(System-view)

CHESSIoT: Block definition diagram (100%)
- System high-level definition
- Inter-things communication
- Safety analysis context (Analysis-view)

CHESSIoT: Internal block diagram (100%)
- Internal parts architecture
- Internal communication (flow ports)

CHESSIoT: FLA Textual language
(100%)
- FLA behavior modeling

CHESSIoT: Custom interface
(100%)
- Failure probability
- Failure textual description

– – –

Platform
Independent
Model (PIM)
(Multi-view)

Software-level
modeling
(Component-view)

CHESSIoT: Component diagram (100%)
- Software component definition

CHESSIoT: Composite component diagram
(100%)
- Components internal composition
- Ports and connections

CHESSIoT: Inner class diagram (100%)
- Communication construct definition
- Internal & conditional events
- OnEntry/OnExit actions
- Message payload
- Guards

CHESSIoT: State machine diagram
(100%)
- State data
- State transition

– – – –

Deployment-level
modeling
(Deployment-view)

– CHESSIoT: Textual language
(100%)
- Runtime deploymentrules
- Services provisioning

CHESSIoT: Class diagram
(100%)
- Deployment node
- Deployment machine
- Services

– – –

Safety analysis CHESSIoT: Tree editor (50%)
- FLAMM model

– – –

Platform
Specific
Model (PSM)

Platform specific
software model

CHESSIoT: Text editor (50%)
- ThingML PSM model

– – – –

Deployment
modeling

– – – – – –

Safety analysis CHESSIoT: Custom FT viewer & editor
(100%)
- Fault-tree models

CHESSIoT: Tree editor orExcel Spreadsheet
(50%)
- FMEA model

– – – –

Physical model Platform specific
code

CHESSIoT: Text editor (50%)
- Generated code

– – – –

Deployment
configuration

– CHESSIoT: Text editor (50%)
- Ansible script files

CHESSIoT: Text editor
(50%)
- Docker compose files

– – –
as what, why, how, where, when, and who, in order to understand the
ole of each modeling artifact that is conceived by the approach. By
ombining abstraction levels and questions, a matrix of cells is gener-
ted, where each cell has a unique scope. Based on these results, the
MQEF approach helps to determine the completeness, coverage, and

ntegration capacities provided by the languages. In this evaluation, we
ocused only on the completeness and coverage of the CHESSIoT DSL.

In the original paper [21], UML modeling languages were com-
ared with BPMN, and the strengths and weaknesses of both were
ighlighted. The CHESSIoT DSL is based on both UML and SysML
odeling languages, which inspired the qualitative analysis conducted

n this paper. The analysis was done from various perspectives: the
HAT question focused on the modeling artifact used for designing IoT

evices; the HOW question examined the quality of development arti-
acts used for modeling the system’s process or behavior; the WHERE

question highlighted the modeling of the system’s location, while the
WHO question focused on the people involved. The WHEN and WHY
questions evaluated the development artifacts involved in modeling the
system’s timing and motivation. The evaluation was done at different
levels, including PIM, PSM, and Physical abstractions.

5.5.2. MMQEF analysis of CHESSIoT
At each abstraction level, the modeling artifacts involved in the

three main engineering processes, namely safety analysis, development,
and deployment were evaluated. Table 8 presents the summary of
the evaluation process. The MMQEF evaluation approach requires a
completeness percentage to be established for each modeling artifact,
30
based on how it contributes to answering the coverage of the abstraction
level-philosophical question pair for a specific cell. This value is mainly
used in cases when two or more modeling languages support one cell
or when calculating the overall completeness of the language. This
value is based on the opinion or judgment of experts (i.e., the modeling
language analysts) who define the degree to which modeling artifacts
(e.g., model elements, diagrams, or meta-elements) support a cell based
on the specific purpose of that artifact [21].

In our case, the coverage rates were set to partial (50%) or full
(100%) support of different relations (cells). Note that only the coveted
cells (means with any kind of support) were considered for this, and all
authors were involved in such iterative expert-level discussions. Finally,
the following criteria were followed in the process:

• A custom CHESSIoT modeling artifact that fully supports the
modeling of the relation between a viewpoint (column) and an
abstract-level (row) was given a ranking of 100%

• The support that is from an external tooling or in-built generic
editor was given a 50% ranking.

Following the results presented in Table 8, the below inferences
were identified:

1. In the horizontal direction, the cell’s content can be interpreted
as being from the same abstract model but developed at different
phases with different purposes. At this stage, no model transfor-
mation is involved. On the other hand, on the vertical axis, one
or more model transformations are from one abstraction level to
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another (PIM–>PSM–>Physical) In our analysis, the transforma-
tion was looked at from the three engineering perspectives and
can be identified from similar colors.

2. Platform Independent Model (PIM)
⊳ Taking the platform-independent modeling layer, CHESSIoT
DSL fully supports the system-level IoT Things design using BDD
and IBD diagrams, which account for 100% coverage. Later, such
a model is enriched with failure behavior in which components
are annotated with failure-logic rules. The two different mod-
els are independent but compatible to produce the annotated
CHESSIoT model. Regarding usability, the FLA textual modeling
language with 100% coverage with auto-completion features
is used to automatically extract from the recommendation of
components and ports the previous functional model on the
fly. Furthermore, the support for failure probability and failure
description interface is also provided customary.
⊳ Regarding the software model, the component, composite, and
inner class diagrams are used separately to achieve different
parts of the software under development. On the HOW question,
the behavioral models are developed using UML state machine
diagrams. The events, guards, actions, and payloads are created
inside the component using inner class diagrams and associated
with the state and state transitions. Each simple component is
associated with its own state machines at this stage. Referring to
the MMQEF UML/BPMN comparison, this coverage was given a
100% rate as everything is supported fully inside the CHESSIoT
tool. From the usability point of view, CHESSIoT provides a
means of constraining different model palettes and drawers to
be shown or hidden according to the current design view or the
diagram type being used.
⊳ On the deployment modeling, only the WHERE and HOW
questions are 100% satisfied by the CHESSIoT modeling infras-
tructure. As stated above, such questions mainly enforce the ca-
pability of the modeling tool to support to design of the process
or the location of the software in development. Consequently,
the CHESSIoT deployment modeling supports the software sys-
tem location (WHERE) by defining deployment nodes, machines,
and services. In addition, the support for run-time service provi-
sioning is classified as run-time deployment behavior modeling,
which falls into the HOW category.

3. Platform Specific Model (PSM)
⊳ The PSM in CHESSIoT is the intermediate model generated
from the PIM model. The FLAMM model is derived as a trans-
formation result from the annotated CHESSIoT model for safety
analysis purposes. This model is typically complete for further
safety analysis, such as FTA or FMEA. However, it can still be
manipulated using an in-built EMF tree-based editor. This was
marked as 50% coverage by CHESSIoT as it can be satisfied in
the CHESSIoT tool or elsewhere. Regarding the software model,
the modeling of the intermediate ThingML PSM model can be
done either in a built-in text editor inside the CHESSIoT tool or
separately within the ThingML tool. Thus, a 50% coverage was
given. Note that the ThingML model originates due to the trans-
formation from the software models that integrate functional
and behavioral CHESSIoT PIM models.

4. Physical layer
⊳ CHESSIoT support at the physical layer can be looked at
from the generated artifacts that are ready to be run or con-
sumed by the users. In this regard, CHESSIoT provides a fully
custom-made environment based on Sirius17 for manipulating FT
models. In addition to that, the generated FMEA model could be
manipulated through an inbuilt-in EMF tree-based editor. Again,
this was given a 50% coverage as it can be satisfied in the

17 https://projects.eclipse.org/projects/modeling.sirius
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CHESSIoT tool or elsewhere. At the same stage, an automated
transformation is used to produce an FMEA table from such a
model, which can be manipulated using an Excel spreadsheet.
Finally, the CHESSIoT tool does not provide a custom-made
environment for manipulating the generated code (i.e., Ansible
deployment scripts) and the docker-compose deployment files;
therefore, such relationships are covered using the built-in text
editor. Consequently, a 50% coverage ranking was assigned for
each of the relationships.

According to the MMQEF evaluation approach, the uniqueness of a
cell in Table 8 is looked at from the specific scope it targets as well
as the percentage of completeness in which it satisfies. The overall
completeness analysis of CHESSIoT could now be derived from the av-
erage of the individual completeness values. In this case, only the cells
covered by the tool are considered for the completeness analysis. From
the table, the average completeness of CHESSIoT can be calculated as
follows:

%𝐶 =

𝑃𝐼𝑀
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
100 × 6𝑐𝑒𝑙𝑙𝑠+

𝑃𝑆𝑀
⏞⏞⏞⏞⏞⏞⏞⏞⏞
50 × 2𝑐𝑒𝑙𝑙𝑠+

𝑃𝐻𝑌 𝑆𝐼𝐶𝐴𝐿
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
75 × 1𝑐𝑒𝑙𝑙 + 50 × 3𝑐𝑒𝑙𝑙𝑠

12𝑐𝑒𝑙𝑙𝑠
= 77.08% (7)

The MMQEF approach considers the coverage as the rate at which
the modeling language covers the whole relationship possibilities be-
tween all of the 6 viewpoints with respect to their corresponding 9 ab-
straction levels which amounts to 72 cells. Looking at Table 8, the max-
imum number of covered cells by the CHESSIoT approach is equal to
17 (note the cells occupying two viewpoints). It is worth noting that the
modeling of the WHO (people), WHEN (time), and WHY(motivation) is
not supported by CHESSIoT at all of the abstraction layers, making the
overall coverage percentage 12 × 100/72 which is equal to 16%. Taking
out such unsupported viewpoints will put the overall performance at
62.9%. Considering the broadness of the viewpoints and the technical
requirements to implement such tooling, we believe that CHESSIoT
has achieved its model-based IoT engineering maturity. However, the
future extension to cover such areas is also considered important.

5.6. Threat to validity

While CHESSIoT supports essential engineering activities of IoT
systems, there are some limitations that need to be addressed in the
future. One of the main issues is the lack of standardization and agreed-
upon reference architecture in the IoT domain, which often results in
platforms not adequately addressing crucial engineering requirements.
Although CHESSIoT’s modeling language was inspired by the multi-
view approach of the IoT-A reference architecture [2], it introduces
new concepts such as failure logic modeling, deployment-related de-
sign, and more. However, other essential modeling constructs related
to information flow, security, and other areas are yet to be covered in
CHESSIoT.

It is important for the Fault-Tree Analysis approach used in system
dependability analysis to comply with international software depend-
ability and safety standards, such as [88]. However, the current tool
has not yet achieved international certification. To validate its effec-
tiveness, it is being tested in industrial settings with large models and
increased complexity. One of the limitations of CHESSIoT is the lack of
means for testing generated software to support safety analysis results
that reflect real-world conditions.

The MMQEF approach usually relies on the Eclipse Modeling Ana-
lytics Tool (EMAT) for qualitative analysis, according to [21]. Unfor-
tunately, during the writing of the paper, the tool was not available.
Normally, the data from Table 8 is inputted into EMAT, which then
computes Formal Concept Analysis (FCA) to generate semantic lattices.
These lattices are essentially a connected knowledge graph that makes

inferences about the modeling language’s completeness.

https://projects.eclipse.org/projects/modeling.sirius
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6. Conclusion and future work

This article presented CHESSIoT, a model-driven environment de-
signed for developing multi-layered IoT systems. The approach covers
all three primary layers of IoT systems, namely edge, fog, and cloud,
and is demonstrated through a home automation case study. The
article showcases the capability of CHESSIoT to generate fully func-
tional ThingML source models, which can be further transformed into
platform-specific code for deployment on low-level IoT devices. The
support for qualitative and quantitative safety analyses using Fault-
Tree models is also highlighted. Additionally, a deployment modeling
approach and run-time service provisioning approach are discussed.
Through comparative analysis and a taxonomic qualitative evaluation,
the article identifies CHESSIoT strengths and weaknesses as well as
different areas where CHESSIoT can make significant contributions.

In the future, our aim is to incorporate testing support for the
generated code, which can help identify any potential missing safety
rules and enhance overall reliability. We also plan to enhance the quali-
tative safety analysis mechanism by enabling the generation of minimal
cut-set Fault Trees, allowing for more precise analysis. Moreover, we
intend to make the system failure mode abstraction method easily
customizable to different domains, improving flexibility. Lastly, we are
eager to apply the development and deployment approach of CHESSIoT
to real-world industrial use cases, leveraging practical scenarios to
refine and improve the platform.

Source code

The full code and the instructions on how to use CHESSIoT can be
found at https://github.com/fihirwe/CHESSIoT-features.
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