
Journal of Computer Languages 78 (2024) 101243

A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

Supporting model-based safety analysis for safety-critical IoT systems
Felicien Ihirwe a,b,∗, Davide Di Ruscio a, Katia Di Blasio c, Simone Gianfranceschi b,
Alfonso Pierantonio a

a Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy
b Innovation Technology Services Lab, Intecs Solutions S.p.A, Pisa, Italy
c Automotive Division, Intecs Solutions S.p.A, Pisa, Italy

A R T I C L E I N F O

Keywords:
Model-driven engineering
Model-based safety analysis
Failure-Logic Analysis
Fault-Tree Analysis
Internet of Things

A B S T R A C T

Dependability is regarded as the ability of the system to provide services that can be trusted within a specific
period. As the complexity and heterogeneity of Internet of Things (IoT) systems rise, so does the possibility
of errors and failure. Early safety analysis not only reduces the cost of late failure but also makes it easier
to trace and determine the source of the failure beforehand in case something goes wrong. In this paper, we
present an early safety analysis approach based on Failure-Logic Analysis (FLA) and Fault-Tree Analysis (FTA)
for safety-critical IoT systems. The safety analysis infrastructure, supported by the CHESSIoT tool, takes into
account the system-level physical architecture model annotated with the component’s failure logic properties
to perform different kinds of automated failure analyses. In addition to its ability to generate the system
Fault-Trees (FTs), the new FTA analysis approach automatically performs qualitative and quantitative analyses
which include the elimination of redundant events, unnecessary failure paths, as well as automatic probabilistic
calculation of the undesired events. To assess the effectiveness of the approach, a comparative study between
our propose approach with 19 existing approaches in both academia and industry was conducted showcasing
its contribution to the state of the art. Finally, a Patient Monitoring System (PMS) use case has been developed
to demonstrate the capabilities of the supporting CHESSIoT tool, and the results are thoroughly presented.
1. Introduction

In our daily lives, we encounter several intelligent Internet of Things
(IoT) systems in various domains, such as smart cities, health care,
home automation, and industrial production. IoT systems integrate
different intelligent features into our daily human activities through
the automation of services. Aside from the inherent difficulties in de-
veloping multi-device IoT applications for diverse platforms, software
developers often make false assumptions. One of these assumptions is
that devices will never fail [1]. Indeed, IoT systems might fail because
of a wide range of reasons: devices’ age, data sources, communication
protocols, deployment environment, as well as human errors. In IoT
ecosystems, different types of errors can occur. They can be local
(e.g., failing sensors) or involve multiple devices at the same time
(e.g., network failures or missing communication patterns), causing the
entire system to fail [2].

A significant challenge to be recognized in IoT ecosystems is pro-
viding a reliable infrastructure for the billions of expected devices
and delivering their intended services without failing in unexpected
and catastrophic ways [3]. A system is considered fail-safe if it has

∗ Corresponding author at: Department of Information Engineering Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy.
E-mail addresses: jeanfelicien.ihirwe@graduate.univaq.it (F. Ihirwe), davide.diruscio@univaq.it (D. Di Ruscio), katia.diblasio@intecs.it (K. Di Blasio),

simone.gianfranceschi@intecs.it (S. Gianfranceschi), alfonso.pierantonio@univaq.it (A. Pierantonio).

none or harmless failures. In contrast, a safety-critical system can
have catastrophic failures that sometimes result in human life loss.
For instance, in the healthcare domain, the monitoring of hospital-
ized patients must be done with extreme caution. For instance, in a
safety critical system such as a ‘‘Patient Monitoring System’’, a simple
failure, such as a false sensor data reading, can have catastrophic
consequences, including the patient’s death. Because these systems are
at the intersection of information technology and biomedical sciences,
it is necessary to understand how the connected components work
and the ability to make perfect decisions either manually or through
automated software. Furthermore, these systems are among the riskiest
in engineering because they interact directly with sick patients.

Engineering such systems is challenging and complex primarily due
to the ever-increasing heterogeneity in every aspect that needs to be
combined to fully produce a well-sensed and functional system [4].
Through a high-level abstraction, Model-Driven Engineering (MDE)
can provide a unique means for representing many aspects of het-
erogeneous systems all in one place thanks to modeling languages,
vailable online 22 November 2023
590-1184/© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cola.2023.101243
Received 31 May 2022; Received in revised form 19 September 2023; Accepted 10
 November 2023

https://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
mailto:jeanfelicien.ihirwe@graduate.univaq.it
mailto:davide.diruscio@univaq.it
mailto:katia.diblasio@intecs.it
mailto:simone.gianfranceschi@intecs.it
mailto:alfonso.pierantonio@univaq.it
https://doi.org/10.1016/j.cola.2023.101243
https://doi.org/10.1016/j.cola.2023.101243
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2023.101243&domain=pdf

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
specifically domain-specific ones (DSMLs). Tackling such heterogene-
ity, it is essential to look at every system sub-component as a black
box, where both the physical characteristics and the software that
manages them are highly linked [5]. These sub-systems can be de-
signed, developed, tested, and analyzed independently, and later, they
can be integrated to form a fully functioning system. However, it is
unavoidable that such systems might fail. Therefore, assessing their
safety and trustworthiness beforehand is crucial to guarantee their
reliability in case something goes wrong.

Dependability is regarded as the ability of the system to provide
services that can be trusted within a specific period [6]. It is mainly
characterized by five essential attributes: availability, reliability, main-
tainability, integrity, and safety. In this paper, we focus on safety, which
is defined as the absence of catastrophic effects for the user(s) and
the environment [7]. Safety is one of the major features that must be
investigated and considered during the development phase of such sys-
tems to prevent further disasters. Again, from the healthcare system’s
point of view, when something goes wrong, it is critically important
to react quickly and with high precision to isolate the danger before it
happens. However, these systems are very complex and involve high-
tech interconnected devices in which the process of discovering faults
can be very long and tedious.

In the past, safety engineers relied on different informal design
artifacts and documents, such as requirements documents, to measure
the safety compliance of the system with less or no involvement of
system engineers. Later, several approaches, such as [8–12] (to mention
a few), have emerged in the field. These approaches add a degree of
automation during the analysis process, bridging the gap between the
system and safety engineers. However, these approaches were designed
and developed to fit domains such as aerospace, automotive, and
cyber–physical systems. In some cases, they might not fully suit the
IoT domain. This is mainly due to the large degree of heterogeneity in
IoT ecosystems, not to mention its current rapid evolution.

This paper presents a new approach for modeling an early safety
analysis for safety-critical IoT systems based on the Fault-Tree Analysis
(FTA) approach. The approach runs on top of CHESSIoT, a model-
driven environment for engineering industrial IoT systems. The CHES-
SIoT environment is built on top of the CHESS tool [13], an open-source
model-driven tool that offers cross-domain modeling, development,
and analysis of high-integrity systems. CHESS supports different kinds
of analysis, including but not limited to real-time schedulable anal-
ysis [13], Contract-Based Analysis [14], and Quantitative Reliability
Analysis based on Mobius [15]. In addition to this, CHESS also offers
means to perform early safety analysis based on Failure Logic Analysis
(CHESS-FLA) [16]; however, that existing infrastructure is not suitable
enough to support the IoT domain as well as not mature enough to
support the Fault-Tree Analysis as one of the common and necessary
artifacts used in the process of safety analysis [17,18].

The presented approach relies on and extends the existing CHESS-
FLA infrastructure [16]. Normally, CHESS-FLA offers means to: (i)
model the system’s failure behavior through the decoration of the
system’s simple components following the Failure Propagation Trans-
formation Calculus (FPTC) annotation [19], (ii) run the Failure Logic
Analysis (FLA), (iii) and propagate the analysis results back onto the
original model [20]. Throughout the CHESS-FLA analysis process, the
entire system’s behavior is automatically determined solely from the
composition of its elements. Thus the potential of automatic model-
based safety analysis is significant. It is achieved by calculating the
failure behavior from the composite parts up to the system level. This
can help predict the impact of a component change or architectural
change on a system very cheaply [19]. Furthermore, suppose an es-
sential failure behavior occurs at the model system level. In that case,
it will be easy to discover the source of the fault immediately and
identify where the fault tolerance measures should be directed in the
architecture to mitigate them.
2

The new proposed extension extends the CHESS-FLA by supporting
the definition of the failure behavior of a simple component with no
input ports. In addition, the extension supports the generation of the
system’s complete Fault-Trees and performs qualitative and quantita-
tive FTA Analysis. In the proposed approach, the qualitative analyses
help eliminate unnecessary paths and redundancies in the FTs’ events.
On the other hand, quantitative analysis allows the user to set the
basic event probabilities and calculate the failure probabilities of an
entire system from its constituent parts’ failure event probabilities. This
calculation is automatically performed following the well-known logic
probabilities calculation mechanism techniques [21–23]. Aside from
the FTA, the existing CHESS infrastructure also supports the generation
of the Failure Mode Effect Analysis (FMEA) table [24], one of the
common and necessary artifacts used in the safety analysis process.

Throughout the paper, we present the evaluation mechanism and
the experimental evaluation outcomes to better assess how the pro-
posed approach performs compared to the 19 existing approaches
drafted from the academic literature and the industry. In doing so,
six main features have been considered: (i) IoT-specific support, (ii)
support for system design modeling, (iii) support the failure behavior
modeling, (iv) automated FT generation, (v) support for automated
qualitative FT analysis, (vi) and support for automated quantitative FT
analysis. In addition, we used a Patient Monitoring System (PMS) case
study to demonstrate the effectiveness as well as the capability of the
supporting tool. As a result, we summarize this paper’s key contribution
as follows:

• We present CHESSIoT’s system-level modeling environment for
designing IoT systems, considering the system’s physical aspects.

• We presented the CHESS-FLA extension to support the safety
analysis suitable for the IoT domain.

• We introduce an automated Fault Tree generation approach that
can handle large and complex models while still supporting crit-
ical features like event tracking and component sub-tree genera-
tion.

• We present both qualitative and quantitative FTA analysis ap-
proaches on the generated Fault-Tress.

• We present the experimental results from a relative evaluation
mechanism conducted in comparison with 19 existing approaches
in the literature.

• We present a Patient Monitoring System (PMS) case study to
demonstrate the effectiveness of the proposed approach as well
as the capability of the supporting tool

The rest of the paper is arranged into seven sections as follows: Sec-
tion 2 provides a general background of the paper; Section 3 presents
the proposed CHESSIoT system-level modeling approach; Section 4
presents the proposed safety analysis approach; Section 5 presents the
evaluation mechanism highlighting comparative study results as well
as the developed PMS running example. In Section 6 we discuss the
related work, whereas Section 7 concludes the paper and draws future
perspective work.

2. Background

2.1. Safety critical systems

The term ‘‘safety-critical system’’ was created in response to growing
concern and awareness about the use of computers in situations where
human lives could be jeopardized if an error occurs [25]. Safety-critical
systems are those whose failure could result in loss of life, significant
property damage, or damage to the environment [26]. A safety-critical
system should be ideally designed to lose no more than one life per
billion hours of operation [27]. We can see many examples of such
systems in the following domains: aviation, railways, medicine, nuclear
engineering, and military. Engineering such systems is difficult and

must be done with extreme caution, as even the smallest error in the

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.

a
m
f
r
c

p
h
c
b
i
s
c
a
f
s
t
f
a
a

p
f
s
e
d
a
o
l
m
d
i
c

e
c
n
a
c
a
a
s
a
a
h

2

o
p
h
h
d
t
d

h
s
l

process can have disastrous consequences. More and more modern
safety-critical systems are incorporating new technologies, such as ma-
chine learning techniques, to reduce the possibility of failure through
intelligent responses provided by artificially trained robots [28]. Ac-
cording to [29], a system’s fault occurs when the functional behavior of

component is disrupted due to either internal or external reasons. This
ay eventually result in an error, which is when the system deviates

rom correct behavior to erroneous behavior. When such a deviation
esults in a total interruption of the system or the interruption of a
omponent’s functionality, it is referred to as a failure.

A significant challenge recognized in the IoT ecosystem is how to
rovide a reliable infrastructure for the billions of expected devices and
ow to deliver their intended services without failing in unexpected and
atastrophic ways [3]. In the IoT context, safety is often considered to
e the ability to detect and prevent any unintended failure behavior
n IoT systems [30]. In the past, IoT systems were considered fail-
afe because of their size, as their failures mostly had no or harmless
onsequences. However, due to the system’s rise in size and complexity
nd the increased demand for IoT systems in the industry, errors and
ailures for such systems are unavoidable. For instance, IoT systems,
uch as Intelligent traffic lights, smart homes, smart manufacturing sys-
ems, as well as patient monitoring systems, can suffer from potential
ailures generated internally in the system due to several issues such as
ge or poorly connected or failures caused by external influences such
s weather or human error.

As research in this area continues, their developers deem existing
roposed concepts and architectures safe. Still, they are frequently
ound to be impractical for real-life applications because safety-critical
ystems involve unpredictable behavior of lives, properties, or the
nvironment [31]. In addition, as the technologies evolve in some
omains, such as IoT, new failure modes, such as denial-of-service
ttacks against networked information systems, are emerging. Failures
ccur through physical effects and service disruption or data loss. The
ack of a systematic, disciplined, and quantifiable software engineering
ethodology, as well as a comprehensive abstraction mechanism for
ealing with the increasing complexity of safety-critical systems, results
n a wide variety of similar, but not congruent, isolated solutions that
annot be easily reused and combined [30].

The number of computer systems that we consider safety-critical is
xpected to grow significantly in the future. In addition, the declining
ost of hardware, improvements in hardware quality, and other tech-
ological advancements ensure that new applications will be sought in
wide range of domains [26]. However, for the analysis of the safety-

ritical systems, there is no universally accepted rigorous dependability
nalysis process, which helps in choosing the metrics, techniques,
nd methodologies for the dependability evaluation of such critical
ystems [6]. In any case, analysis of software development approaches,
s well as safety-critical software, is required to determine the most
ppropriate techniques for use in the production of future software for
igh-integrity systems [25].

.2. Model-driven engineering

Model-driven engineering (MDE) seeks to support the automation
f the software development process by employing models as the
rimary artifact in the development of complex systems [32]. MDE
as been applied to almost every research domain, and its success
as demonstrated a significant push toward better and faster software
evelopment [33]. In addition, MDE can generate fully functional code
hrough a series of model transformations [34], potentially reducing
evelopment time and costs.

MDE can provide a unique means for representing many aspects of
eterogeneous systems all in one place thanks to modeling languages,
pecifically domain-specific ones (DSMLs). Models defined by these
anguages are intended to be far more human-oriented than common
3

code artifacts, which are inherently machine-oriented [35]. Engineer-
ing platforms such as MDE4IoT [35], ThingML [36], IoTML [37] and
Montithings [2] (to name a few), have demonstrated the potentiality of
MDE to be a realistic alternative for developing scalable IoT systems.
However, developing IoT code generators that are perfectly capable of
handling large models and accommodating a huge set of requirements
provided by the client is still an open issue. This is due to the high de-
gree of heterogeneity in their hardware devices, data sources, protocols,
deployment levels, and so on [38].

In terms of analysis, the IoT domain still presents a significant gap
in the validation, verification, and analysis of such systems under devel-
opment [32,39]. The main challenge is the scope of the analysis; this is
mainly due to the fact that the number of IoT devices and application’s
complexity is already huge and is only likely to grow in the future.
Furthermore, the physical replication of such systems is challenging and
much more complex due to their scale [40]. This potentially contributes
to the long-standing lack of standardized, realistic reference models
that can perfectly capture the interactions between sensors, apps, and
actuators.

2.3. Model-based safety analysis

Failures that could risk human life and environmental or prop-
erty injuries are considered safety hazards. Safety analysis should run
concurrently with system design, including interactions between the
two, and it should be kept up-to-date throughout the system life cycle.
Risks of this sort are usually managed with the methods and tools of
safety engineering. The safety analysis is conducted initially by safety
engineers, which is one of the dependability analysis techniques that
aim to study system response in case of an unwanted failure behavior
that can hinder system safety compliance. In safety-critical systems, it is
often required to maintain a high level of safety to prevent potentially
catastrophic consequences [16].

Failure logic approaches map the reliability concepts (produced
by reliability engineers) to reflect the underlying fault-to-failure and
failure-to-fault propagations within the systems [41]. In practice, a
component can act as a source of failure (for example, by causing
a failure in output due to the activation of internal faults) or as a
sink (a component can avoid failure propagation by detecting and
correcting the failure in input). Furthermore, failures in a component
can be propagated (i.e., a failure can be passed from input to output)
or transformed (by changing the nature of the failure from one type
to another from input to output) [42]. The Failure Logic Analysis
(FLA) [16] allows the possibility of defining such failure behavior of
the system following the Failure Propagation Transformation Calculus
(FPTC) notations [19]. In the end, a combination of different rules can
also be expressed in terms of logic combination and later analyzed to
estimate the failure behavior of the entire system

The Fault-Tree Analysis (FTA) [43] technique is currently one of the
most widely used methodologies when performing safety analysis. The
purpose of an FTA is to graphically represent and trace down influences
from a system-level hazard to individual failures of distinct system
components and sub-components. The graphical representation of the
scenarios can aid in explaining these causal chains that can lead to a
hazard, followed by an analysis to determine the combination of events
that trigger such hazards or compute the chance that such a hazard
could occur. During the analysis, the safety engineer starts with the
actual hazard, referred to as a ‘‘top event’’, and traces down different
event combinations that might contribute to such a hazard until the
actual cause is reached. This is referred to as a ‘‘basic event’’ in this
case. Fig. 1, shows an illustrative FT example.

Starting from the FLA results, FT combines logic representation and
relies on logic gates to determine the output of a component’s failure
behavior. This representation is performed in an automated fashion.
For instance, when two or more failure events are needed to represent
a certain component failure behavior, an ‘‘AND’’ gate can be used; while

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 1. An FT example.

if one event is enough to determine the component’s failure, an ‘‘OR’’
gate is used. Other known logic gates can also be used based on the
desired system failure behavior. Depending on the scope of the system,
the root failure can be caused by internal components or by an external
impact, and such failure events are referred to as injected in the system.

Since the system’s simple FTs might be difficult to understand and
challenging to derive information from, especially when the system is
huge, both quantitative and qualitative analyses are frequently per-
formed to extract useful information from the resulting trees. The
primary goal of qualitative FTA is to discover the logical relationships
between events that contribute to a system failure [44]. It is focused
on determining the minimum number of failure pathways required to
cause a system to fail. Quantitative FTA, on the other hand, seeks to
compute the probability of a top-level event (system failure) based on
the probabilities of individual component failures and their logical rela-
tionships. This approach involves assigning numerical probabilities or
failure rates to each basic event (component failure) using component
data, expert judgment, or experimental results [44].

Failure Mode and Effects Analysis (FMEA) [24] is among the earliest
known failure analysis techniques, and it is frequently used as the first
stage in a system reliability analysis. Reliability engineers originally
developed it to investigate problems that could come from military
system failures. It is used to examine as many components, assemblies,
and subsystems as feasible to determine failure modes and their causes
and effects. The failure modes of each component, as well as their
consequences for the rest of the system, are recorded in a separate
FMEA worksheet [45]. Unlike the FTA, which follows a top-down
deductive approach from the top event to specify its possible causes, the
FMEA follows an inductive reasoning approach. Using a forward logic
approach, FMEA separates a system into small components, analyzes
failures that each component may cause, and assesses the effects of
those failures on the system. As a result, the FMEA performer must
properly understand the system safety context and software require-
ments or design specifics to ensure the comprehensiveness of the system
decomposition and the validity of each component’s usability.

FTA, as well as FMEA, are already mandatory analysis approaches
for performing safety analysis in domains like automotive and aerospace
[17,18], and more domains are subject to follow that suit [11]. From
4

a technical point of view, FTA and FMEA analysis seek to support
the improvement in safety analysis, and they both rely on the same
system definitions and failure criteria defined by the user. In our case,
CHESS-FLA analysis results are used in both the FTA and FMEA analysis
process (we will discuss this in the following sections)

3. CHESSIoT system-level modeling

Due to the heterogeneity present in the IoT ecosystem, deciding
the levels of abstraction can be tricky. Therefore, the CHESS tool
provides a multi-view modeling environment by providing six main
views: system view, component view, deployment view, analysis view,
requirement view, and platform-specific view. Each supported view has
its own underlined constraints that enforce its specific privileges on
model entities and properties that can be manipulated. Furthermore,
depending on the current stage of the design process, CHESS sub-views
are adopted to enhance specific design properties or steps of the current
process. More specifically, the system view aims to provide a system-
level modeling environment focusing on the physical aspects of the
system to support early-stage analysis.

As the CHESS tool is a cross-domain modeling and development
environment, depending on the domain, concepts can vary accordingly.
To tackle that, it allows extending the current view with additional
domain-specific sub-views, which can be activated based on the domain
or the design development stage. To support IoT system-level model-
ing, CHESSIoT introduces ‘‘IoTSub-view’’. Once applied at any design
stage, the user will benefit from a dedicated IoT-specific modeling
infrastructure.

In addition to that, we have defined a high-level UML/SysML pro-
file extension to reflect the construct and semantics present in IoT
system-level architectures. This was achieved by defining IoT-specific
stereotypes and nomenclatures that better fit an IoT perspective. Fig. 2
presents the abstract syntax of the CHESSIoT system-level profile. Such
a level considers only the main physical architectures involved in
achieving a full multi-level IoT system without covering any aspects
related to system functional behavior.

3.1. CHESSIoT system-level DSL

By referring to Fig. 2, the System element defines a conceptual
representation of an IoT system under development as a whole, and all
the other elements are defined under it. Other sub-systems can also be
contained, making it possible to design IoT system-of-systems architec-
tures. To better support all the layers present in the IoT ecosystem, the
CHESSIoT System profile spans all the layers, typically from the edge
to the fog and the cloud layer.

At the edge layer, a PhysicalElement can be of any type, ranging
from a tiny microcontroller to an element as big as a car, a plane,
or a house. Any physical component that can play a part at the edge
layer is represented as a physical element. The system can have one or
more physical elements; each can have one or more communicating
ports. The following four main element types extend the physical
element. A PhysicalEntity on the other hand, can be almost any object
or environment on which a running physical element can act. A self-
driving car software, for instance, runs on various boards attached to
the car but not on the car itself. So a car is a physical entity in this
case. Furthermore, a PhysicalBoard, as expected, represents a physical
controller where the software runs. For example, a Raspberry Pi board
processes data collected by different sensors deployed in different
building parts. Finally, the SensorBlock represents a sensor component
at the thing layer that is in charge of collecting environmental data.
In contrast, the ActuatingBlock in this case represents any actuating
component.

At the fog layer, we only have the Gateway, which is just any kind
of device that serves as a link between the physical world of things
and the virtual world, in this case, a cloud infrastructure. This element
communicates with both the remote server and the physical board. The

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 2. IoT System-level meta-model.
CHESSIoT system-level model does not include any information related
to any functional behavior of such a component but the main physical
construct of the system. The cloud layer, on the other hand, is made up
of a Server and a ConsumerEntity. A server is an element of the cloud
infrastructure that stores data and cloud services. A consumer entity
is any third-party element that can communicate with the server to
consume its data. Depending on its role in the system, this component
can be active or passive. A computer, for instance, that runs software
to visualize and control remotely deployed sensors qualifies as an
active consumer entity. In contrast, a traffic light actuator that receives
commands from the server to function will be qualified as a passive
consumer entity.

4. Safety analysis approach

This section presents the technical aspects of the proposed auto-
mated model-based safety analysis approach and is divided as follows:
In Section 4.1, we present a general overview of the proposed safety
analysis process supported by the proposed tool; in Section 4.2, we
describe the extended FPTC syntax; and in Section 4.3 describe the
CHESS-FLA transformation process. In Section 4.4, we introduce the
new FT generation process, whereas Section 4.5 introduces the novel
FTA analysis, covering the technical aspects behind both the qualitative
and quantitative analysis mechanisms.

4.1. Safety analysis process overview

IoT systems can experience failures due to various factors, including
device age, data source problems, network issues, deployment envi-
ronment, and external constraints. For instance, human error can also
cause problems. The CHESSIoT safety analysis approach proposes an
early safety analysis method using Fault-Tree Analysis, which involves
annotating a system model with failure behavior rules using the Failure
Propagation Transformation Calculus (FPTC) notation [12].

As illustrated in Fig. 3, the safety analysis process typically com-
mences with the IoT system engineer creating a model based on the gath-
ered system functional requirements 1 in Fig. 3. These requirements are
5

mainly acquired through close collaboration with the client. The system-
level model encompasses the system’s major functional components,
sub-components, and interconnections. These system components can
be represented as blocks in SysML Block Definition Diagrams (BDD),
which align with the abstract syntax meta-model illustrated in Fig. 2.
Internal Block Diagrams (IBD) illustrate the interdependencies between
these components, facilitating the identification of error propagation
paths. Each part or block can be assigned to a specific architectural
subsystem or component. The physical architecture should be extensi-
ble to add new components or blocks as necessary. The entire safety
analysis process is fully detailed in the following sections.

Once the system model is complete (see the CHESSIoT model 2
in Fig. 3), it can be handed to the safety engineer for further safety
analysis. Similarly to the system engineer, the safety expert can derive
safety requirements 3 from the client’s needs, domain standards, and
expertise to ensure optimal safety. Starting from identifying the typical
system-level failures, the safety engineer identifies the failure behavior
for each component following the Failure Propagation Transformation
Calculus (FPTC) notation. The FPTC technique enables the analysis
of component-based systems with cyclic data, control-flow structures,
and closed feedback loops. Such failure behavior, referred to as FLA
rules 4 are annotated to the system’s simple comments to illustrate
how failures might occur in a system component and how they are
propagated from one component to another. At this stage, the safety
engineer can additionally set the component’s failure rates 5 to be used
for quantitative analysis.

4.2. FPTC calculus

In contrast to other prevailing approaches that heavily depend on
monitoring the state events of individual system components, the Fault
Propagation and Transformation Calculus (FPTC) technique excels in
scenarios involving intricate interplays of potential cyclic paths, in-
tricate control flow dynamics, and intricate closed feedback loops,
where traditional methodologies may fall short. [46]. The extended
annotations explain how failures might occur in a system component
and how they are propagated from one component to another. Based

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 3. Safety analysis process.
1

2

3

4

5

6

7

Table 1
Failure types.
Failure type Description

Early output is provided too early
Late output is provided too late
ValueCoarse output out of range in a detectable way
ValueSubtle output not in range in an undetectable way
Omission no output is provided
Commission an output is provided when not expected

on its nature, a function/component can propagate a failure (carrying
a failure from its input onto its output without changing its nature),
transform a failure (change the nature of a failure from input onto the
output), act as a source of failure (creating a failure despite no failure
in input), or act as a sink (avoiding the failure being either propagated
or transformed).

When defining the failure behavior of a component, the following
failure abstraction categories are supported: service provision failures,
such as the omission or commission of the output; timing failures, such
as the early or late delivery of the output; and value domain failures,
such as the output value being out of a valid range, stuck, biased,
exhibiting a linear or non-linear drift, or erratic behavior. In addition
to that, a noFailure annotation is used to indicate a no-failure mode
at the input port. Table 1 describes different failure modes and their
descriptions.

The first FLA integration in CHESS was done in [16] with the
support for FI4FA (Formalism for Incompletion, Inconsistency, Interfer-
ence, and Impermanence Failures Analysis) [47], which is an extension
of FPTC that takes into consideration Incompletion, Inconsistency, In-
terference, and Impermanence Failures, and their corresponding coun-
termeasures. However, in the previous version, it was impossible to
express a component’s failure behavior with no input ports. To model
the failure expression on a certain port, for instance, the port’s name
and the failure type are always necessary; in the case of no failure at a
given component port, a ‘‘noFailure’’ mode is annotated to the port to
identify the internal failure. Nevertheless, a component may not need
to have an input port to fail. For instance, a temperature sensor’s role
6

is to sense the surrounding environment and relay the information to
connected parties. In such a case, it only needs an output port. Such
internal failure behavior can now be expressed using a ‘‘(∗)’’ notation.
The new extended syntax, with respect to the one introduced in [16],
is shown in Listing 1.

FLA: " LHS " => " RHS " ; #left/right side of an
expression

LHS=portName ." bL "| portName ." bL "(,portName ." bL ")
+| " (*) "

RHS=portName ." bR "| portName ." bR "(,portName ." bR ")+
bL=wildcard| " bR "
bR=noFailure| " FAILURE "
FAILURE=early|late|commission|omission|

valueSubtle
|valueCoarse

Listing 1: Extended FLA syntax

4.3. CHESS2FLA transformation

The Annotated CHESSIoT model 6 , produced by the system expert
as previously explained, gets automatically transformed by means of
the CHESS2FLA model-to-model transformation to generate the CHES-
SIoT FLA model 7 . During the transformation, each component is es-
sentially a black box in the CHESS environment that can only exchange
data through its ports. The FLA technique automates the calculation of
a complete system’s failure behavior starting from the failure behavior
rules of its separate composite components and interconnections. This,
in turn, means that the failure behavior of composite elements is
also determined by the failure behaviors of their instantiated sim-
ple components and their internal decomposition. Simple components
have no other parts and rely on the failure behavior defined in the
previous stages. When the failure modeling is finished, the model
undergoes a CHESS2FLA model-to-model transformation, which trans-
forms it into an FLA model following the meta-model presented in
Fig. 4. This transformation is domain agnostic, and it does not consider
any domain-specific construct other than linking each component and
its final state of failure into a single model instance.

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 4. CHESS-FLA meta-model [42].

As seen from the FLA meta-model, a composite component rep-
resents a subsystem that contains one or more sub-components. As
mentioned in the previous stages, this component does not possess
the failure behavior by itself, but it relies on its sub-components to
determine its failure behavior. On the other hand, a simple component
represents a functional component that can contribute to system failure.
Each component being simple or composite has one or more input and
output ports which are referred to when deriving failure rules. A rule
is composed of a set of input expressions and output expressions and a
prefix always starts it ‘‘FLA:’’. An expression being either from the input
or the output side is made by a combination of a port and a failure type
associated with it. An illustrative rule is shown in Eq. (1)

𝐹𝐿𝐴 ∶ 𝑖𝑛𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_1,… ., 𝑖𝑛𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑁 →

𝑜𝑢𝑡𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_1,… .., 𝑜𝑢𝑡𝑝𝑢𝑡_𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑀 ;
(1)

In composite components, the propagated failures from a simple
component output ports are automatically transferred to its connected
output ports. Furthermore, each simple component is assigned rules
where each rule contains input and output expressions reflecting fail-
ures and their respective ports. During the transformation, the extended
notation of the internal failure of a component with no input ports
creates a unique virtual port assigned with a ‘‘noFailure’’ failure type
at the component input port to reflect the idea of the component’s
internal failure source. Although it might appear to be a minor improve-
ment with respect to the existing FPTC infrastructure, it eliminates a
significant amount of confusion during the system modeling process
because otherwise, input ports with no reasonable connections will be
left hanging which may mislead the user.

At each level of the FLA analysis, the results are back-propagated
onto the original model to assign each component’s failure state to be
reflected in the model. The final failure state at simple and composite
components as well as at the system level is reflected when the analysis
is done. The system FT 9 and FMEA 8 table can be automatically
generated and analyzed before being sent back to the safety expert for
consultation. If something is wrong, changes can be made before the
final inspection. In the following sections, we briefly review each step
of the supported analysis process. Although the FMEA analysis is part
of the safety analysis process as it relies on CHESS-FLA analysis results,
this paper focuses primarily on the FT-based analysis approach.

4.4. Fault-tree generation

The FT generation process is performed following a FLA2FT model
for the transformation of a CHESS-FLA model into a conforming FT
model. Fig. 5 shows an FT meta-model adopted from [8]. The FTModel
element is the top element of the tree, and it is instantiated for each
failure that propagates to the system output ports during the FLA
analysis. Each FTModel element contains a logical network of events
and gates that together form an FT. The entire FT generation process
will be covered in the following sections.
7

Fig. 5. FT meta-model [8].

4.4.1. Fault-tree events
In our proposed approach, each event can be graphically identified

in the FT from its unique identifier (ID). An event ID is defined as a
pair of ‘‘failure_name’’ and ‘‘port_name’’ in a given component. This ID
never changes through the FT generation as well as in the FT analysis
process. This can potentially help in event tracking when comparing
generated and analyzed FTs. In addition to that, each event has its
own name which by default combines the information regarding its
corresponding failure and its effect in a given component. The effects
can be of type top failure type at the system level, local failure caused
by the system’s intermediate failures across the tree, injected failure
resulted from external faults, and internal failure resulted from the
component’s internal faults. In the next listing, we go over various event
types that we use to construct the FT and we describe how those events
are generated throughout the transformation process.

• Basic events: A simple component may suffer different kinds
of malfunctions, generating either one or more kinds of internal
failures. One or more notations may be required to define such
events for a given component. A basic event is used to repre-
sent a failure that is initiated inside a simple component. This
can be basically referred to as a simple component acting as a
source of failure. In this case, a failure condition is present on
any of the output ports despite no failure at its input port. In
case a simple component does not possess any input port, the
newly developed approach allows the definition of such condition
following Expression (2). On the other hand, in case a simple
component possesses one or more input ports, its failure behavior
can be defined by explicitly initializing all the input failures of
the component with a ‘‘noFailure’’ condition (Expression (3)).
Fig. 6(a) shows the basic event representation in an FT resulting
from an internal failure of a component.

𝐹𝐿𝐴 ∶ (∗) → 𝑝.𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡); (2)

𝐹𝐿𝐴 ∶ 𝑝1.𝑛𝑜𝐹𝑎𝑖𝑙𝑢𝑟𝑒,… ., 𝑝𝑛.𝑛𝑜𝐹𝑎𝑖𝑙𝑢𝑟𝑒 → 𝑝.𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡); (3)

NOTE: Considering 𝑝1, 𝑝2 to 𝑝𝑛 to be the input ports of a simple
component while 𝑝 is an output port. If any of their corresponding
failure condition is different to ‘‘noFailure’’, then the above condition
is not met, so, all ‘‘noFailure’’ conditions on other ports are ignored
as they do not contribute toward the logical failure behavior of the
component.

• External events: External events are used to represent failures
that can be introduced from the environment outside the system
boundaries. CHESS provides the possibility to inject failures in
the system through the system-level input ports. These faults
are modeled with a comment annotation with <<FPTCSpecifica-
tion>> stereotype attached to the relevant input port where the

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 6. Event types.

fault is being injected in SysML block diagrams (the case study in
Section 5.5.2 will demonstrate this concept in more details). The
injected fault specifies the type of failure attribute being injected
into the system and the port to which it is introduced on. This
fault injection can also be done on a composite sub-system under
analysis. Fig. 6(b) shows a graphical representation of an external
event resulting from an injected fault in the system.

• Intermediate events: An intermediate event is used to describe
the local failure effects resulting from a logical output of one
or many events. In the presented approach, these events are
generated to represent the failure condition at the input or output
port(s) of the simple component resulting from an internal failure
or other failure condition from the outside of that simple compo-
nent. It is also used to represent the top event of an FT. Fig. 6(c)
is used to represent an intermediate event.

• Underdeveloped events: The underdeveloped event is used to
specify an event resulting from a failure in which we do not have
sufficient information about it. This can basically happen when
a failure is introduced on the input port of a simple component
without a preceding definition of how it was been propagated or
injected at that input port. During the FT generation process the
symbol in Fig. 6(d) is used.

4.4.2. Failure propagation
Failure propagation occurs in a component when a single input

port failure condition of a component is directly transferred on its
output ports of the same component without changing its nature. This
failure propagation can be modeled in CHESS-FLA using the notation in
Expression (4). A propagation also occurs between two connected com-
ponents, when a failure condition at the output port of the preceding
component is transferred on the input port of the following component.

𝐹𝐿𝐴 ∶ 𝑝(𝑖𝑛).𝑓𝑎𝑖𝑙𝑢𝑟𝑒1 → 𝑝(𝑜𝑢𝑡).𝑓𝑎𝑖𝑙𝑢𝑟𝑒1; (4)

4.4.3. Failure transformation
A failure transformation occurs within a component when a failure

condition present at the input port of a simple component is converted
into another type before reaching the output port (Expression (5)).
A failure transformation can also occur when more than one failure
expression of any type the exception of a ‘‘noFailure’’ or ‘‘wildcard’’ at
8

multiple input ports is transmitted on a single output port (Definition
in Eq. (6)). Even if the failure has the same type, the fact that the
component converts two failures at its input ports to a single failure
at the output port is regarded as a failure transformation.

𝐹𝐿𝐴 ∶ 𝑝(𝑖𝑛).𝑓𝑎𝑖𝑙𝑢𝑟𝑒1 → 𝑝(𝑜𝑢𝑡).𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡); (5)

𝐹𝐿𝐴 ∶ 𝑝(𝑖𝑛1).𝑓𝑎𝑖𝑙𝑢𝑟𝑒1,… ., 𝑝(𝑖𝑛𝑁).𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑁 → 𝑝(𝑜𝑢𝑡).𝑓𝑎𝑖𝑙𝑢𝑟𝑒(𝑜𝑢𝑡); (6)

4.4.4. Fault-tree generation process
The system FTs are generated through a series of model-to-model

transformation mechanisms written using the Epsilon Transformation
Language (ETL) [48]. The process starts by instantiating a number of
FT objects equal to the number of failures that propagates to the output
port(s) of the system. At this stage, each error that propagates to the
output port(s) of the system is represented into its own FT. Note that
when a ‘‘noFailure’’ condition is propagated to the output, it is ignored.
This technically means that the system acts like a failure sink and it is
able to mitigate its propagation to the output of the system, which is
also true for all other sub-systems. To achieve that, the Algorithm 1 is
followed.
for p in allPorts do

if p is output of the system then
for f in failures assigned to p do

if f is not "noFailure" then
Create an FT relative to the failure f and p;
Add FT to FTs sequence;

end
end

end
end

Algorithm 1: Instantiate fault-tree

In the next steps, each FT is built separately and recursively. The
initial action involves the creation of a top event among all. A top
event is generated as a result of the failure propagation to the system
output port. In terms of logical gates used in the FT, only ‘‘AND’’ and
‘‘OR’’ gates are adopted. An AND gate is used to indicate a failure
transformation from an input to an output port of a component (see
Section 4.4.3). An OR gate, on the other hand, is used to depict a
failure propagation situation (see Section 4.4.2). The OR gate can also
depict a scenario in which one or more failure outputs from distinct
components are passed to the input of the following component. The
whole FT generation population algorithm is described in Algorithm 2.
Data: FLA composite component (system-level)
Result: FT model
for port in allPorts do

if port is an output of the system then
for f in failures assigned to port do

if f.name is correspond to an FT then
Create an intermediate event ← TOP FAILURE ;
Assign an OR gate to it;
Add it to its corresponding 𝐹𝑇 ;
for con_port in port.connectedPorts do

recurseFT(f,con_port,FT,topEvent);
// Call Algorithm 3

end
end

end
end

end
Algorithm 2: FLAComposite2FT rule algorithm

When the top-event creation is done, the intermediate events are
created and populated into the FT, based on the failure expressions and
their components they are assigned to. The FT population involves a
recursive transformation process in which, as indicated from FLA meta-
model (Fig. 4), from a component, we can have information on ports
and from ports we can get to rules, rules to expressions and back to the

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 7. Expression (6) corresponding tree.

components. So, at this stage the only crucial stopping case is when the
transformation hits a condition matching an internal, underdeveloped
or an injected failure. For instance, in Fig. 7, a simple transformation
example with indications showing a simple transformation mapping of
the Expression (6) is shown. From the example, each of the output
expression is mapped to an output event of a logical combination of
the input expressions. Each input expression is mapped to an event and
the type of such event is determined by the expression condition. In
addition to that, the logical gate is defined based on the nature of the
input expressions to satisfy the failure propagation and transformation
concepts. A brief description of the followed algorithm is described in
Algorithm 3.

In the newly developed environment, it is possible for a safety
expert to assign failure rates of any of the events leading to basic failure
conditions. These events include the internal failure condition and the
injected failures. In addition to the failure rate assignment, the user
is also able to add a failure description in a textual format to reflect
the proper cause of the failure. This is potentially important when,
for instance, a simple component might have two different internal
failure conditions leading to two different outputs. For instance, an
aging device can still work by providing the wrong output leading to a
valueCoarse or valueSubtle failure at the output port, whereas a blown
device fuse will automatically halt its functionality therefore leading to
an ‘‘omission’’ failure at the output port. Assigning such information to
the FT model will eventually improve its readability. This assignment
is done long before the FLA2FT transformation process and when the
transformation finishes, a probability file is generated separately from
the model in an Excel file format. This file is later loaded into the model
to support the quantitative probabilistic analysis process.

4.5. Fault-tree analysis

The proposed approach supports both the qualitative and the quan-
titative FT analysis through the use of rigorous model transformation
techniques. In this section, we will go through the supported analysis.

4.5.1. FT qualitative analysis
The FT qualitative study is conducted using an FT2FT model-to-

model transformation (ie: transformation from 9 to 10 in Fig. 3) in
which the FT meta-model in Fig. 5 serves as both the source and the
target meta-model. This effectively creates new FT representations in
the workspace, permitting users to reuse both the generated and the
analyzed FTs at the same time. The goal of this qualitative analysis
approach is to provide a new representation of the existing FT that only
9

includes the essential representations. Although the current qualitative
analysis does not fully reflect the calculation of the minimal event sets
needed for a system to fail (minimal cut-sets [49]), it does provide a
much shorter and more readable FT that still reflects the goal for the
analysis.

During the qualitative analysis process, the following actions are
performed:

• 1. Removal of internal component failure propagation: FT helps
users discover and trace down the source event of a system failure
in a more easy and intuitive fashion. As described in Section 4.4.2,
internal component failure propagation occurs when a single
input port failure condition of a component is directly transferred
to the output ports of the same component without changing its
nature. Although keeping such information in the FT is important,
as the model becomes big and complex, this information can
be difficult to look over. Therefore, each path meeting such a
condition is omitted and removed from the FT. This process
drastically reduces the vertical magnitude of a FT but it does not
change its nature.

• 2. Removal of external component-to-component failure prop-
agation: This refers to a condition in which a component-to-
component propagation is solicited from a single channel in the
FT. For instance, if a single failure condition at the input port
of a component is propagated from a single source, then this
information is omitted in the analyzed FT. Mainly on the basic
events, events involved in a failure transformation, and the top
event are kept in the FT.

• 3. Removal of basic event redundancy: Typically, a failure is ini-
tiated from a single source and propagates over many propagation
pathways until it reaches the output port(s). If, in all the propaga-
tion channels, no transformation occurred, then, from the output,
only one path is considered, and, from there, all intermediate
propagation representations are removed accordingly.

During the transformation process, only the paths that satisfy the
internal or external failure transformation are kept in the tree. This is
to help users only care about the important information when tracing
the origin of the failure. One special case of propagation that is kept in
the tree is when the FT that has to be analyzed contains a single path
in which a single basic event propagates up the tree all the way to the
top event. Then, in such cases, only the top event and the basic event
are kept in the analyzed FT. Finally, each of the omitted intermediate
paths as well as each gate resulting from a simple component internal
failure transformation is replaced by a feed-forward intermediate gate
to enhance the FT readability.

For example, taking the generated FT branch shown in Fig. 8, the
event 0 is obtained from a logical ‘‘AND’’ output from 3 subsequent
paths, which makes this event a result of a component-to-component
external transformation. Starting from event 2 (‘‘omission’’) failure at
the input port to the event 1 (‘‘commission’’) event at the output port,
indicates internal failure transformation. So in such a case, event 1
and its next gate are kept permanently, while event 2 is kept tempo-
rally for future analysis. Further down to event 3 (‘‘omission’’) up to
event 2 (‘‘omission’’) is component-to-component failure propagation,
so event 3 will be permanently removed while event 2 will be kept
again temporarily for further analysis.

Next, we remain with event 4 (‘‘omission’’) up to 2 (‘‘omission’’)
which is a propagation as well (omission-to-omission). From here,
normally event 4 is supposed to be removed; however, as event 4
is a basic event, event 2 will be removed instead. Finally, the whole
omitted part of the tree will be substituted by a feed-forward interme-
diate gate to enhance the readability of the FT. The final version of
the FT is provided in the right-hand figure, 8(b). To sum up, we would
say that ‘‘the internal failure 4 leading to an ‘‘omission’’ at the output
port of a basic component had transformed into event a ‘‘commission’’
failure event 1 at some point in the system, in which then combined
with the other two failure sources had caused an ‘‘omission’’ at the top
level of the system.

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.

R
i

e

Data: current_failure as f, current_port as p, current_FT as FT, event_to_construct as eG
esult: final populated FT
f p is of not system’s port then
if p is of a "Simple Component" then

for outExp in p.owner.rules.outputExpressions do
for f1 in outExp.failures do

if f1==f then
Create an intermediate event 𝑒0 ← LOCAL FAILURE ;
Assign gate to e0 based failures at the p port;
Append e0 to eG;
Add e0 to 𝐹𝑇 ;
for inpExp in p.owner.rules.inputExpressions do

for f2 in inpExp.failures do
if f2 is not a "wildcard" then

if f2 is a "noFailure" then
Create a basic event 𝑒𝑇 ← INTERNAL FAILURE ;
Append eT to eG;
Add 𝑒𝑇 to 𝐹𝑇 ;

else
Create a intermediate event 𝑒1 ← LOCAL FAILURE ;
Assign an OR gate to e1;
Append e1 to e0;
Add e1 to 𝐹𝑇 ;
for p1 in inpExp.port.connectedPorts do

recurseFT(f2,p1,FT,e1); // Recurse from the start of the Algorithm 3
end

end
end

end
end

end
end

end
else

for p1 in p.connectedPorts do
recurseFT(f,p1,FT,ev);// Recurse from the start of the Algorithm 3

end
end

lse
Create a external event 𝑒𝑋 ← INJECTED FAILURE ;
Append eX to eG;
Add eX to FT;

end
Algorithm 3: Recurse FT operation
4.5.2. FT quantitative analysis
The quantitative probabilistic analysis is meant to automatically

calculate the system-level (top event) failure rate. In the proposed
approach, the user is able to assign the failure probability rates of the
basic failure events, such as internal failure and injected failure. This
information can be obtained from the device manufacturer’s data sheet
as well as from safety experts. The probability calculation follows a
widely used formula for conducting a logical output of an ‘‘AND’’ or an
‘‘OR’’ gate in the FT [21,22]. The output of an ‘‘AND’’ gate means that
the output event will only happen when a combination of independent
events occurs at the same time. On the other hand, the output of an
‘‘OR’’ gate implies that the output event will occur if any one of the
input events occurs.

The system failure rate (the top event probability) is calculated
following a recursive calculation of the intermediate probabilities for
the intermediate events. Based on the probabilities of the basic events,
the probability values of their parent events can be calculated from
the input event probabilities. The probability calculation follows the
formula in Fig. 9. Let N be the number of input events and 𝑃 the
10

𝑖𝑛
probability of the input event; the output probability 𝑃𝑜𝑢𝑡, for both
‘‘AND’’ and ‘‘OR’’ gate types, is calculated as follows:

Calculating the probability of a single failure propagation or trans-
formation for a component involves transmitting the probability from
an input port to the event’s output port. This same principle holds when
conducting component-to-component failure propagation, where the
probability of the failure event from the previous component’s output
port is transferred to the event linked with the immediate component’s
input port. Furthermore, we follow a specific protocol when dealing
with branch probabilities stemming from an underdeveloped failure
event. Specifically, when these probabilities are directed into an ‘‘OR’’
gate, they are initially set to 0. Conversely, when they are channeled
into an ‘‘AND’’ gate, they are set to 1. This approach is deliberately
adopted to maintain neutrality during the probability calculation pro-
cess, as 0 and 1 are considered neutral values in the context of addition

and multiplication.

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 8. Qualitative transformation example (a) before, (b) after.

Fig. 9. Probability calculation formula.

5. Evaluation

In this section, we describe the approach used to evaluate the
proposed approach and the tool in supporting the safety analysis of
safety-critical IoT systems with respect to other existing approaches.
In Section 5.1, we present briefly the evaluation process we used; in
Section 5.2, we introduce the considered case study scenario while
Section 5.3 presents the research questions. In Section 5.4, we presents
the results of the conducted comparative study. In Section 5.5, the
physical architecture of the PMS system is presented whereas Sec-
tion 5.6 presents the PMS system failure-logic modeling approach.
Finally, Section 5.7 presents the FTA analysis results showcasing both
qualitative and quantitative aspects.

5.1. Evaluation process

The evaluation procedure we adopted followed six different steps.
To demonstrate the potential of our proposed approach, we first iden-
tified a use case that precisely fits in the context of the safety analysis
of safety-critical IoT systems. Next, we defined research questions that
primarily focus on evaluating and demonstrating the effectiveness and
potential of the proposed approach. Third, we briefly assessed the
key features offered by our system and the supporting tool. Following
that, we presented the experimental results, emphasizing answering
the posed research questions. Because our proposed approach can be
employed in areas other than IoT, the evaluation approach will consider
the IoT domain and the widely used FTA approach both in academia
and in system engineering industry. To this end we included the
most industrial state-of-the-art platforms, including but not limited to
ISOGRAPH Reliability Workbench [50], xSAP [51], AltaRica 3.0 [52],
EMv2 for AADL [53], HiP-HOPS [54], and MediniAnalyse [55].

5.2. Motivating example: Patient monitoring system (PMS)

Due to the general rapid evolution of electronics and information
technology, more powerful bedside patient monitors capable of com-
plex bio-signal processing and interpretation are becoming available,
11
and they are usually equipped with some highly specialized communi-
cation interfaces [56]. This goes hand in hand with the huge advances
in IoT technologies that allow the integration of such devices with
the capability to connect to the internet, which makes it possible to
monitor the health state of multiple patients remotely. To support
our evaluation process, we adopted the ‘‘Efficient Patient Monitoring
for Multiple Patients Using WSN’’ case study [57]. The case study
is an advanced system capable of reliably monitoring the multiple
parameters of up to six hospitalized patients simultaneously in real
time.

The system investigates the potential of employing Wireless Sensor
Networks (WSN) to reliably and wirelessly collect multiple parame-
ters such as blood pressure, temperature, electrocardiography (ECG),
electroencephalography (EEG), and pulse oximeter (SPO2). These pa-
rameters are collected through a set of sensors placed on different
parts of the patient’s body. For instance, the ECG Sensor is placed on
the chest and on the limbs to extract the patient’s heart rate data,
and the EEG sensor is placed on the patient’s head to read electrical
activity generated by the brain. Furthermore, the Blood Pressure sensor
is placed on the arm to detect the level of pressure in the blood; the
SPO2 sensor is placed on the patient’s finger to measure the oxygen
saturation of a patient’s blood; and, finally, the Temperature sensor is
placed on any part of the body to measure the temperature. Fig. 10
describes the high-level architecture of the system.

As a result, the recorded parameters are wirelessly transmitted to a
computer running PMS software, which feeds them onto the monitor
screen in the doctor’s office. The software can also wirelessly send
alarming messages to the doctor’s phone if they are not present to
respond to the patient’s requests. We will describe the architecture in
great detail in Section 5.5.

5.3. Research questions

We study the performance of our proposed approach by considering
the following research questions:

• RQ1: How does the presented approach distinguish itself from
state-of-the-art techniques? We simply did a short review of the
existing methodologies in relation to what the proposed approach
offers to derive our approach’s contribution.

• RQ2: Does the suggested modeling infrastructure address all the
aspects of designing an IoT system, including the need for safety
analysis? Apart from the modeling language, we looked at the
capability of the approach to capture all the required information
to facilitate the safety analysis as well as the degree to which such
data are taken into consideration when performing the analysis

• RQ3: How well do the proposed FLA rules efficiently reflect the
system failure behavior leading to the top failure events? We
look at the efficiency of the derived rules from the possible system
failure events in clearly supporting the actual logical analysis
leading to the expected results.

• RQ4: Does the proposed FT qualitative and quantitative analysis
improve the existing FT analysis techniques? We will concentrate
on the reliability of the result from the supported automated
calculus about the existing approaches. We will also have a look
at the final FTs and how they better describe the important system
failure paths.

5.4. Short literature review (RQ1)

RQ1: How does the presented approach distinguish itself from state-of-
the-art techniques?

To sufficiently answer the research question, we needed to first un-
derstand the available tools that employ the FTA technique to conduct
the safety analysis in the literature. We did not only focus on tools
that solely support the IoT domain since we wanted to understand the

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 10. Basic architecture of Patient Monitoring System [57].
methodologies used by the existing tools in their FT formalism and
analysis process in comparison with our proposed approach. In the end,
19 different platforms were found in the literature with much closer ties
to our approach.

5.4.1. Search and selection process
The search and selection procedure was divided into four major

stages. Since the purpose of the paper is not to undertake an empirical
study, we did not conduct this review using well-known databases;
we only relied on Google Scholar results. We performed an automatic
search using the keywords ‘‘Model-based Safety analysis in IoT sys-
tems’’, ‘‘Fault Tree analysis in IoT systems’’, and ‘‘Fault Tree analysis
from SysML models’’. The goal was to offer us a sample of current
publications on topics related to the search strings. Because each search
returned a large number of results, we only analyzed the first two pages
of the results. The second phase was conducted for each search, in
which we filtered out such results by reading through the titles and
abstracts. To pass this step, a paper title and abstract must include at
least one of the terms ‘‘Fault-Tree Analysis’’ or ‘‘Model-Based Safety
Analysis’’. Following that, we skimmed through the selected articles
to exclude those that merely presented an analysis approach but with
no supporting tool, resulting in a total of 13 approaches. Finally, we
included 6 most industrial tools and workbenches that are extensively
considered namely ISOGRAPH [50], xSAP [51], AltaRica 3.0 [52],
EMv2 for AADL [53], HiP-HOPS [54], and MediniAnalyse [55]. This
led us to a total of 19 primary studies.

5.4.2. Results
To better answer RQ1, we have defined a set of fundamental fea-

tures we think a safety analysis tool should possess. These features were
evaluated on the selected approach in comparison with the proposed
infrastructure. The features include supporting system design modeling,
failure behavior modeling, automated FT generation, performing qual-
itative FT analysis, and performing quantitative FT analysis. Table 3
summarizes the findings of the study, in which for each approach, a
‘‘Yes’’ or ‘‘No’’ label was used to indicate if that approach supports
that particular feature. As indicated, all 19 approaches are represented
against the 6 main evaluation factors. In this section, we will go over
the results of the study and have some discussion in line with the factors
defined Table 2.
12
• IoT-specific: Given our focus on the IoT domain, our initial concern
naturally revolved around evaluating IoT support within existing
tools and approaches. After a thorough examination, we found
that only 4 out of 19 tools explicitly target the IoT domain. While
we acknowledge that certain underlying modeling languages,
such as AADL [53], possess design elements that can capture
IoT-related aspects to some extent, we firmly believe that being
IoT-specific remains a crucial factor for usability and community
adoption. Furthermore, it is important to recognize that the IoT
domain is characterized by rapid and continuous evolution, with
new technologies and concepts emerging daily. Tools lacking
IoT-specificity may eventually struggle to effectively accommo-
date these changes, and extending their capabilities can become
challenging. In this dynamic landscape, we view CHESSIoT’s
contribution as pivotal in advancing the state of the art in IoT
system safety analysis. By explicitly addressing the unique re-
quirements of the IoT domain, we aim to provide a solution that
not only meets current needs but also adapts seamlessly to the
evolving IoT ecosystem, ultimately benefiting both researchers
and practitioners in the field.

• Support for system modeling : This feature assesses whether the tool
supports system-level design before proceeding with its safety
analysis. Conducting a safety analysis needs to go hand in hand
with the design of the system under analysis. We believe that
integrating the design and analysis infrastructure can improve
transparency and consistency among system and safety experts.
Table 3, on the other hand, indicates that approaches such as [62,
63,66] which we considered ‘‘academic’’ do not provide such a
feature and instead rely on manually created FT models, which
are then transformed into FT graphs. On the other hand, ex-
cept xSAP [51] which does not clearly provide infrastructure
for modeling the system rather it relies on the behavioral-level
models of the system. In contrast to the previous approach, our
proposed approach completely supports this feature by providing
an environment in which system main blocks and sub-systems can
be decomposed and analyzed separately.
Even though approaches such as [7,8,59,69,70] extend the SysML
language in the same way that we do, our environment is more
user-friendly due to the advanced component-based and multi-
view modeling infrastructure, where each view has its own un-
derlined constraints that enforce its specific privileges on model
entities and properties that can be manipulated [32]. We also

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Table 2
Selected approaches for the experimental analysis.

Domain Approach Title Year Type

Academic
approaches

JARVIS [58] A framework for Model-Driven Engineering of
resilient software- controlled systems

2021 Journal

Z. Haider et al. [16] FLA2FT: Automatic Generation of Fault Tree
from ConcertoFLA Results

2018 Conference

F. Mhenni et al. [59] Automatic fault tree generation from SysML
system models

2014 Open tool

I. Silva et al. [60] A dependability evaluation tool for the Internet
of Things

2013 Journal

H. Fazlollahtabar et al. [61] Fault Tree Analysis for Reliability Evaluation of
an Advanced Complex Manufacturing System

2018 Journal

MetaFPA [62] Transformation of Failure Propagation Models
into Fault Trees for Safety Evaluation Purposes

2016 Conference

K. Clegg et al. [63] Integrating Existing Safety Analyses into SysML 2019 Conference
smartIflow [64] Model Based Safety Analysis with smartIflow 2017 Journal
J. Xiang et al. [65] Automatic Static Fault Tree Analysis from

System Models
2010 Conference

Y. Chen et al. [66] Application of Fault Tree Analysis and Fuzzy
Neural Networks to Fault Diagnosis in the
Internet of Things (IoT) for Aquaculture

2017 Journal

L. Xing et al. [67] Reliability Modeling of Mesh Storage Area
Networks for Internet of Things

2017 Journal

B. Alshboul et al. [8] Obtaining Fault Trees Through SysML
Diagrams: A MBSE Approach for Reliability
Analysis

2020 Conference

N. Yakymets et al. [68] Model-based System Engineering for Fault Tree
Generation and Analysis

2013 Conference

Industrial tools

ISOGRAPH [50] ISOGRAPH: Fault Tree Analysis in Reliability
Workbench

1986 Industrial tool

xSAP [51] xSAP: The XSAP Safety Analysis Platform 2016 Book Chapter
AltaRica 3.0[52] AltaRica 3.0: a Model-Based approach for

Safety Analyses
2014 Book

EMv2 for AADL [53] Automated Fault Tree Analysis from AADL
Models

2017 Journal

HiP-HOPS [54] A Conceptual Framework to Incorporate
Complex Basic Events in HiP-HOPS

2017 Book Chapter

MediniAnalyse [55] Toward the Adoption of Model Based System
Safety Engineering in the Automotive Industry

2022 Conference
have to recognize that, most of the industrial approaches con-
sidered in this short study can still support the modeling of IoT
systems, however, as mentioned above, their coherence with IoT-
specific complexities could be a potential blocker as the system
gets more complex.

• Support for failure logic behavior modeling : This feature determines
whether the proposed approach provides mechanisms for explic-
itly defining the failure modes and failure logic behavior of the
system’s components, which contribute explicitly to the safety
analysis process. In our approach, we relied upon FPTC [12]
notation to express the system failure behavior logic due to
its simplicity. Some of the considered academic approaches use
‘‘IF-THEN’’ notation or logical math association expressions to
formalize failure behavior including but not limited to that [59,
60,62,66]. Nonetheless, all these approaches lack the concepts of
external failure injection as well as internal failure transforma-
tion and propagation. Furthermore, [68] uses a formal method
approach in modeling system failure logic while [8] depends
on annotating failure information in the model state machines.
However, the complexity behind formal method formalism or
state machine definition can be difficult and time-consuming to
handle tasks.
Regarding the industrial tools, the approaches such as Hip-HOPS
[54], xSAP [51], and EMV2 for AADL [53] rely on annotating
the existing model with non-functional properties which describes
failure behavior associated with any given element and the logic
with which they are propagated from the element’s inputs to its
output and adjacent components. Although this is the case none
of the approaches relies on FPTC notation. For instance, tools
like xSAP [51] rely on the model extension routine which takes
13

input from the nominal model (describing behavior in the absence
of faults), the fault library (containing templates for faults and
their dynamics), and the fault extension instructions (specifying
directives to instantiate the fault templates) to analyze finite- and
infinite-state synchronous transition system. Although this can
be handy in performing safety analysis, such a combination can
add more complexity to its usability. In contrast, tools such as
ISOGRAPH [50] and AltaRica 3.0 [52] do not support in any way
any kind of failure behavior modeling of the system.

• Perform automated FT generation: This feature determines whether
the proposed approach automatically generates the FT from the
model rather than manually constructing it. This is one of the
main motivations for our proposed approach since we believe that
automating the FT generation process is critical to reducing the
time safety engineers spend performing the safety analysis as well
as increasing transparency in the process. Although most of the
industrial tools considered to support the automatic Fault-Tree
generation, ISOGRAPH [50], does not support this; this could be
due to the scale at which FTs are used in their ecosystem. Not
only in safety analysis but also in other domains like reliability
analysis, and risk analysis which are supported by the ISOGRAPH
workbench. As technology advances, we strongly believe that this
should change in order to remain relevant in the market. Our ap-
proach provides an FT generation infrastructure that can support
large and complex models with advanced features, including but
not limited to event tracking, component sub-tree generation and
analysis, undeveloped branch identification, and so on.

• Perform automated qualitative FT analysis: This feature determines
whether or not the proposed approach supports any means for
performing qualitative analysis on the generated FT, including
detecting minimal cut-sets, FT path reduction, FT event redun-

dancies, and so on. Since FTs can be large, depending on the

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Table 3
Analyzed approaches.

Domain Approach IoT-specific System-level
modeling

Failure behavior
modeling

Automated FT
generation

Perform
qualitative FT
analysis

Perform
quantitative FT
analysis

Academic

Z. Haider et al.
[42]

No Yes Yes Yes No No

JARVIS [58] Yes Yes Yes Yes Yes No
F. Mhenni et al.
[59]

No Yes Yes Yes No No

B. Alshboul
et al. [8]

No Yes Yes Yes No No

N. Yakymets
et al. [68]

No Yes Yes Yes Yes Yes

H. Fazlollahtabar
et al. [61]

No Yes No No Yes Yes

I. Silva et al.
[60]

Yes Yes Yes Yes Yes Yes

Y. Chen et al.
[66]

Yes No Yes No Yes No

L. Xing et al.
[67]

Yes Yes No No Yes Yes

MetaFPA [62] No No Yes No No No
K. Clegg et al.
[63]

No No Yes Yes No No

smartIflow [64] No Yes Yes Yes Yes No
J. Xiang et al.
[65]

No Yes Yes Yes No No

Industrial

ISOGRAPH [50] No No No No Yes Yes
xSAP [51] No No Yes Yes Yes Yes
AltaRica 3.0
[52]

No Yes No Yes Yes Yes

EMv2 for AADL
[53]

No Yes Yes Yes Yes Yes

HiP-HOPS [54] No Yes Yes Yes Yes Yes
MediniAnalyse
[55]

No Yes Yes No Yes Yes

CHESSIoT Yes Yes Yes Yes Yes Yes
system size and complexity as well as the individual component
failure behavior, it is vital for an FTA platform to make it easier
for the user to navigate through the system’s main failure paths
in order to better help in defining how they might be easily
mitigated. This can be accomplished either graphically, through
actions such as path reduction, or textually, through deriving the
minimal sets of events required for a system to fail (minimal cut-
sets). Aside from that, alternative approaches may be completely
platform-specific and dependent on the failure behavior modeling
approach and FT generation mechanisms. It can be seen that
all of the industrial tools support this feature while 6 out of
13 academic approaches considered have a means to support
this. This mainly due to maturity of such tools and the fact that
they have been implemented and being used for many years. It
should be noted again that although CHESSIoT does support the
FT qualitative analysis through unessential FT path removal, FT
event redundancies removal, and so on, it does not fully support
the deduction of minimal cut-sets. This is currently foreseen as
our future work.

• Perform automated quantitative FT analysis: This feature deter-
mines whether the proposed approach allows quantitative anal-
ysis, mainly the top failure event probability estimation. Offering
such support could potentially aid in quantifying the risk and
determining how to manage it. However, this is regarded as
optional in the FTA mechanism due to the lack of a standard
means of determining individual component failure rates, since
basic event failure rates encompass not just hardware failures but
also software, human, and environmental factors. Only 4 out of
13 of the academic approaches evaluated support such a feature,
namely [60,61,67,68]. Our same as all of the industrial tools
considered that already support this, our proposed approach not
14

only computes the intermediate and top event probabilities from
the basic events, but it also recognizes underdeveloped branches
and injected failures failure rate computations. It is also worth
noting that, during the FT generation process, a file containing
the probability information is generated, which allows you to still
update the component failure rates and re-run the analysis, in
which the new values are picked up by the tool without having
to re-generate the FT again.

Looking at the discussions above, it can be seen that the CHESSIoT
approach has a point to contribute in regard to the factors considered
for evaluation. Although the industrial safety analysis tools seem to be
very mature and very advanced in the field, the approach they use still
differs from our proposed approach. In addition to that, although tools
like AADL [53], xSAP [51], and AltaRica 3.0 [52] are open and free to
use, other tools such as ISOGRAPH [50] and MediniAnalyse [55] are
not free. Furthermore, we can see from the Table 3, that among all the
considered approaches none of them fully support all of the considered
six features. Although this might look subjective taking the fact that
some of the industrial tools could indirectly support the IoT modeling,
however, as highlighted above their scalability in terms of IoT-specific
context complexity can be an issue in the long run. In conclusion,
the proposed approach is novel and unique in terms of advancing the
state-of-the-art in the IoT domain through different novel mechanisms
supported as presented in this paper and we believe its contribution in
the field is handy.

5.5. PMS system design (RQ2)

RQ2: Does the suggested modeling infrastructure address all the aspects

of designing an IoT system, including the need for safety analysis?

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 11. Patient monitoring system.
5.5.1. PMS system-level model
In order to better tackle this question, we will showcase the capa-

bility of our proposed modeling environment by employing the case
study presented in Section 5.2. As can be seen in Fig. 10, the Patient
Monitoring System (PMS), uses a set of sensors to collect sick patient
data and send it to a remote server. The system can display the data
on the monitor as well as send an alarm signal when something goes
wrong. Fig. 11 represents the internal physical architecture of the
proposed system. For the sake of simplicity and to facilitate the analysis
process to produce presentable results in a paper, we have considered
the following changes to the architecture presented in 10. Firstly, we
designed a PMS that only monitors a single patient. Secondly, we
introduced a remote server component that acts as a bridge by hosting
the service that saves the received data and exposes it to other third-
party services that might need it. Thirdly, we replaced the doctor’s
phone sub-system with an alarming system component that receives
data from the PMS software on the monitor side. Finally, we added a
‘‘Human’’ component to reflect the role of a doctor in the overall system
functionality.

As shown in Fig. 11, a ‘‘SensingUnit’’ composite component consist-
ing of five sensors, namely ECG, EEG, SPO2, pressure, and temperature
sensors. All the sensors are placed on a patient’s body to collect the
patient’s health parameters. They are directly sent to the controller,
which aggregates all of that information and sends it to a gateway (in
this case, a transceiver). The gateway processes the data and forwards
it wirelessly to a remote server. The server hosts the software services
that save the data and expose it to other authenticated parties in
need. On the other hand, the monitoring software deployed on the
computer accesses such information and sends it to a display screen.
When something goes wrong, for instance, in terms of reading sensor
values that exceed or fall below a certain threshold, the monitoring
software can decide to raise an alarm in order to alert the doctor about
the unusual condition of the patient. In this case, a doctor checks the
displayed data and decides to act accordingly by either shutting off the
alarm, changing the configuration of the systems, or fixing some issues
that might be related to the sensors.
15
5.5.2. PMS model including failure behavior informations
To facilitate the modeling of the system failure behavior data

needed for the safety analysis data, the infrastructure must allow one to
annotate the failure logic behavior rules as well as the failure rates on
each of the low-level simple components, and this information is fully
part of the model itself. As we all know, external influences can cause
a system to fail. Through two system-level input ports, the presented
architecture allows for simulation effects in which an external failure
introduced in the system would affect the overall system functionality.
For instance, the sys_power_in port, used to model the power source
outlet, was injected with an ‘‘omission’’ failure, which basically models
the event in case there is a power outage. On the other hand, the
sys_hum_in port is used for modeling the external influence of the doctor.
In our case, a ‘‘late’’ failure was used to simulate an event in which
a doctor reacted late due to some external factors. Finally, the system
contains two output ports, namely system_monitor_out for modeling the
output port from the monitor, and the system_alarm_out to model the
output of the alarm system. According to the direction of the ports at
the system level as well as the types of failures that will be able to
propagate to them, different FTs will be generated accordingly.

5.6. System failure behavior (RQ3)

RQ3: How well do the proposed FLA rules efficiently reflect the system
failure behavior leading to the top failure events?

As was previously anticipated, the above system is subjected to
different kinds of failures, either internally generated by the system
or coming from the surrounding environment. As we described in the
previous section, it is possible to model an individual component’s
failure behavior that later gets assessed in determining the failure
behavior of a sub-system or an entire system. Note that we will not be
focusing on software-level functional behavior but on physical failure
behavior, which can even be understood by nonprofessional users. In
order to understand the need for the conducted analysis, let us first
discuss the different top failure scenarios that we have taken into
account in defining individual component rules.

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Table 4
PMS failure behavior table.

Component Rules Description

ECG, EEG, 1 FLA:(*) → ecgsens_out.omission; Sensor fails internally which makes it unable to read and push
any at output port

Temp, SPO2, Pressure 2 FLA:(*) → ecgsens_out.valueCoarse; Sensors begin to fail as they age and provide incorrect data to
the output; this can also be caused by sensor components that
are not properly mounted to the patient body.

sensor Rules 1 and 2 apply to other sensors Same as other sensors

Controller 3 FLA:ecg_cont_in.noFailure, eeg_cont_in.noFailure →

cont_trans_out.omission;
Controller fails completely omitting to send the data

4 FLA:mon_power_in.omission, trans_cont_in.omission →

cont_trans_out.omission;
The controller fails to function due to a power outage at its
input power port, no backup solution is available (trans_cont_in
port)

5 FLA:ecg_cont_in.omission, eeg_cont_in.omission,
press_cont_in.omission, spo_cont_in.omission, temp_cont_in.omission →

cont_trans_out.omission;

All of the sensors simultaneously stop sending data, preventing
the controller from sending any data to the server

6 FLA:ecg_cont_in.valueCoarse → cont_trans_out.valueCoarse; The controller receives inaccurate data from the ECG sensor and
sends it to its output port

7 FLA:eeg_cont_in.valueCoarse → cont_trans_out.valueCoarse; controller receives inaccurate data from the EEG sensor and
sends it to its output port

8 FLA:press_cont_in.valueCoarse → cont_trans_out.valueCoarse; controller receives inaccurate data from the blood pressure
sensor and sends it to its output port

9 FLA:spo_cont_in.valueCoarse → cont_trans_out.valueCoarse; controller receives inaccurate data from the SPO2 sensor and
sends it to its output port

10⃝FLA:temp_cont_in.valueCoarse → cont_trans_out.valueCoarse; controller receives inaccurate data from the temperature sensor
and sends it to its output port

11 FLA:trans_cont_in.valueSubtle → cont_trans_out.valueCoarse; The controller receives an undetected error at its from-system
port, which impedes sensor data transmission.

12 FLA:trans_cont_in.valueSubtle → cont_trans_out.omission; The controller receives an undetected error at its from-system
port halting the data transmission process.

Transceiver 13 FLA:trans_in_fr_unit.valueCoarse → trans_out.valueCoarse; The transceiver received the wrong data and transmitted to its
output port

14 FLA:trans_in_fr_unit.noFailure, trans_in_f_serv.noFailure →

trans_out.omission;
The transceiver fails internally causing the halt of data
transmission process

15 FLA:trans_in_fr_unit.omission → trans_out.omission; The transceiver receives no data and fails to transmit data to its
output

16 FLA:trans_in_f_serv.valueSubtle → trans_o_2_unit.valueSubtle; The transceiver receives an undetected error at its server port
and forwards it back to the sensing unit

Server 17 FLA:server_in.noFailure → server_out.omission; The server fails, bringing the transmission process to a halt

18 FLA:server_in.valueCoarse → server_out.valueCoarse; The server routes the incorrect data received at the input to the
output port

19 FLA:server_in.omission → server_out.omission; The server receives no data from its input port, and this error is
forwarded to its output

20 FLA:serv_in_f_mon.valueSubtle → serv_2_trans_out.valueSubtle; The server sends an undetected error from the monitor back to
the transceiver’s port

Monitor 21 FLA:monitor_in.noFailure → monitor_out.omission,
mon_alarm_out.omission;

The monitor fails internally omitting to display the data on the
screen as well as not communicating to the alarm component

22 FLA:monitor_in.omission → monitor_out.omission,
mon_alarm_out.omission;

The monitor receiving no data from the server omitting to
display the data as well as not sending any communicating
signal to the alarm component

23 FLA:monitor_in.valueCoarse → monitor_out.valueCoarse,
mon_alarm_out.commission;

The monitor receives inaccurate data and displays it on the
screen, potentially sending an unexpected notification to the
alarm component (Commission)

24 FLA:hum_mon_in.valueSubtle → mon_2_serv_o.valueSubtle,
mon_alarm_out.commission, monitor_out.noFailure;

The monitor receives an unpredicted error from the human
nurse component, the failure propagates in the system in various
ways with no direct effect on the data displayed on the screen
before (Refer to Rules 30 and 31 for possible causes)

25 FLA:hum_mon_in.omission → mon_2_serv_o.valueSubtle; The monitor receives no engagement from the nurse intended to
resolve the issue in the system, the cause of which we do not
know. As a result, such a failure will go unnoticed by the
system. (Refer to Rules 11 and 12 for possible effects)

Alarm 26 FLA:mon_alrm_in.commission → alarm_out.commission; The alarm component received an inaccurate notification and
immediately rings because it lacks any type of logical reasoning
on the signal receiving other than ringing.

27 FLA:mon_alrm_in.noFailure → alarm_out.commission; The alarm starts failing due to internal failure which can make
it malfunction by giving false alerts

(continued on next page)
16

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Table 4 (continued).
Component Rules Description

28 FLA:mon_alrm_in.noFailure → alarm_out.omission; The alarm component fails which makes it unable to make any
alert

29 FLA:mon_alrm_in.omission → alarm_out.noFailure; The alarm receives no data but that will not affect the internal
functionality of the alarm

Human nurse 30 FLA:human_in.late → human_out.valueSubtle; The human nurse reacts very slowly in the event of a system
failure, which may or may not affect the system in some way,
which is why a ‘‘valueSubtle’’ is considered.

31 FLA:human_in.noFailure → human_out.omission; The absence of the doctor results in an omission at the output
port
• The alarm sub-system malfunctions by sending out a false
signal: In normal settings, this can occur when the alarm compo-
nent receives the wrong alarm notification. This is usually caused
by the monitor software making a decision based on incorrect
data from one of its input ports. The alarming system, on the other
hand, can send false signals due to its internal failure for a variety
of reasons, such as poor internal configuration or simply aging.

• The alarm subsystem has completely stopped working: It is
possible that the alarm system no longer works completely. This
can be caused by several reasons; for example, the alarm system
being physically disconnected or an internal failure that causes a
total blackout.

• The monitor is displaying incorrect data: As is obvious, the
main cause of this could be incorrect data being sent to the
monitor. However, other factors, such as a faulty monitor, losing
connection to the internet, and so on, make it display the last
received data. It should be noted that these are only general-
ized assumptions; the extensive individual study, as well as their
corresponding failure rules, is shown in Table 4.

• The monitor completely fails to display data on the screen:
This can occur due to internal and/or external monitor issues
such as the monitor not being physically connected to the system
power source, being unable to connect to the server, internal
monitor malfunction due to aging, and so on. On the other hand,
this could be caused by the monitor being properly connected but
the server not receiving any data from the sensing unit.

The next step is to derive internal failure rules as well as propaga-
tion rules for the basic components. For instance, for each sensor, two
rules were defined to model two different scenarios in which a sensor
can fail. A sensor can fail internally, leading to a complete omission in
providing the data to the output port; thus, an ‘‘omission’’ failure will
be propagated to the output port of the sensor. On the other hand, a
sensor can start to fail, but not completely, due to age. This may result
in providing incorrect data to the output; this can also be caused by
sensor components that are not properly placed in the patient’s body.
In this case, we consider that the value sent to the output port is of
the ‘‘valueCoarse’’ type. Hence, the two different types of failure can be
propagated to the same output port in different scenarios, and they will
be represented as indicated in Expressions (7) and (8) respectively. We
considered only the two failure conditions to apply to all of the sensors.
As it can be seen from Table 4, a detailed set of failure behavior rules
and their descriptions are represented.

𝐹𝐿𝐴 ∶ (∗) → 𝑒𝑐𝑔𝑠𝑒𝑛𝑠_𝑜𝑢𝑡.𝐨𝐦𝐢𝐬𝐬𝐢𝐨𝐧 (7)

𝐹𝐿𝐴 ∶ (∗) → 𝑒𝑐𝑔𝑠𝑒𝑛𝑠_𝑜𝑢𝑡.𝐯𝐚𝐥𝐮𝐞𝐂𝐨𝐚𝐫𝐬𝐞 (8)

In CHESSIoT, to facilitate the quantitative analysis, the failure rates
of the component internal failure events as well as the injected failure
events have to be set separately. As we did not have the exact failure
rates of the basic components, we considered the arbitrary failure rates
of any component to be practically small in a range of 10−8 to the
10−7. Fig. 12 depicts the interfaces in which the internal failure and its
17

description are set. The event description is useful for improving the
readability of the FT, but it is not required in conducting qualitative
analysis. When no data is provided for any of the rows, the default val-
ues are used. For instance, an unset basic event probability is assigned
a value of zero in the FT, while the unset basic event description will
still follow the naming convention of ‘‘<failure type> at <port
name> in <component name>’’.

As previously discussed, our proposed approach is capable of satis-
fying all potential failure behaviors prescribed by the safety expert. As
shown in Fig. 11, our approach is capable of modeling the backward
failure propagation paths. For instance, a server failure will affect
the monitor’s behavior, preventing data from being displayed on the
screen. On the other hand, an erroneous command sent in the doctor’s
absence (for example, to fix an unmounted sensor) may eventually
propagate back to the sensing unit, causing a wrong value error to
be transmitted at the controller output port (valueCoarse failure) or
possibly suspending the data transmission process (omission failure). It
is also worth noting that the ability to integrate all of their component
failure rules as well as their failure rates into the same model has the
potential to boost model consistency as well as transparency in the
modeling process.

5.7. PMS system fault tree analysis (RQ4)

RQ4: Does the proposed FT qualitative and quantitative analysis improve
the existing FT analysis techniques?

The FT analysis begins after the CHESS-FLA transformation, as
described in Section 4.1. The FT generation process is performed prior
to running the FT analysis, in which each of the top events described in
Section 4 results in its own FT. For instance, FT leading to a ‘‘omission’’
failure at the system monitor out port is generated to show the entire
failure contribution leading to that top event. Other FTs representing
the remaining 3 top events are generated as well. At this stage, the
generated FTs are very large as they contain every detail related to
failure propagation and transformation from component to compo-
nent, making them tricky to read. Therefore, FT analysis can then be
launched to automatically perform both qualitative and quantitative
analysis on the model. Fig. 13 shows the analyzed FT of the event ‘‘the
monitor fails to display data completely on the screen’’. The presented
FT showcases only the important events and logical gate combinations.
It can be clearly anticipated that the analyzed FT makes it easier to
identify and trace any failure source events in their contribution to the
top failure event. For instance, we can easily grasp that the monitor
would display no data on the screen completely when any of the
following events occur:

• Internal failure in the monitor (10−8 probability)
• Server is down (2 × 10−8 probability)
• The transceiver (gateway) fails completely to transmit the data

(3 × 10−8 probability)
• A combination of events (low-left AND gate) in which there is a

problem with the sensing unit power source and there is no one
to fix that at the moment. (5 × 10−15 probability)

• The controller of the sensing unit fails completely, which halts the
−8
transmission process (1.2 × 10 probability)

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 12. PMS components failures rates set.
7

• An event in which all the sensors do not send the data at all (This
is more unlikely but possible; that is why we have a lower-middle
and gate combination with 2.088 × 10−38 probability).

• An unknown human error occurred from the monitor side (2 × 10−

probability)

When the monitor fails to provide any data, medical workers can
rely on just a handful of events to pinpoint the source of the problem.
Furthermore, medical workers can use the probability associated with
each basic event in the list to swiftly identify the source of failure,
progressing from the most likely basic event (highest probability) to
the least probable event (lowest probability). The overall probability of
this system-level failure event occurring is calculated to be 2.72 × 10−7.
This probability is practically small; however, it can be looked at as due
to the fact that it is calculated automatically and solely dependent on
the arbitrary basic event failure rates.

Other analyzed FT on the event in which ‘‘monitor displaying incor-
rect data’’ and ‘‘PMS alarm sub-system alert false signal’’ are shown in
Figs. 14 and 15 respectively. As it can be seen from Fig. 14, the event
in which the monitor will display incorrect data can be caused by any
of the sensors (OR gate), as well as an unforeseen human error that
transforms throughout the system and hinders the data that are being
transmitted. The overall probability in which such an event can occur
is calculated to be about 3.39 × 10−7 which is higher than the event
in which the monitor can stop working at all.

On the other hand, as shown in Fig. 15, the same events that
cause the monitor to display incorrect information can also cause the
monitor to send a false signal via a failure transformation, resulting
in a false alarm event in the alarm system. It is also worth noting
that an event like the alarm sub-system failing with a probability of
4 × 10−8 would also contribute to that cause. The overall probability
of such an event occurring is projected to be around 5.79 × 10−7
which is much higher than the previous two top events. Furthermore,
while the ‘‘Human error’’ basic event appears twice in the tree, such
failure passes through different channels and eventually transforms
into other types throughout the system. This is practically important
to understand which component of a system’s error would change its
nature, potentially causing a lot more damage than expected. Finally,
It is worth noting that this FT does not include the top event in which
the alarm sub-system stops working completely. An FT reflecting such
an event was generated and analyzed separately.

Typically, safety engineers will collaborate with system engineers
to keep the safety model up-to-date during the development process.
Maintaining coherence between system architecture and the safety
model can be difficult as the model gets larger and more complicated.
Having a framework that can integrate modeling and analysis processes
from a single place would potentially improve consistency, increase
transparency, and minimize analysis time. Overall, the proposed anal-
ysis approach is capable of achieving that by means of automated
qualitative and quantitative calculus.
18
6. Related work

Fault tree analysis is one of the hugely used and suggested methods
when performing different dependability analysis studies, including
safety analysis [30]. We have also mentioned that FTs are among
the mandatory artifacts that should be provided for performing Safety
Analysis in different domains and IoT is yet to follow [11]. However,
most of the approaches presented in the literature still rely on the
manual construction of the FTs, which still makes the process time-
consuming. In this section, we will present go over two categories of
related tools namely general-purpose industrial tools and UML-based
approaches.

6.1. General purpose industrial tools

ISOGRAPH Reliability workbench [50] is a powerful integral visual
modeling and analysis environment in which all the aspects of the
reliability analysis are managed. This software provides comprehensive
tools for assessing and improving system reliability and safety. It allows
engineers to model complex systems and analyze potential failure sce-
narios by making creating fault trees, event trees, and reliability block
diagrams easier. ISOGRAPH supports failure rate and maintainability
prediction, Failure Mode Effects, Criticality Analysis (FMECA), and
Reliability Allocations (Reliability Block Diagram as well as Fault Tree,
Event Tree, and Markov analysis combined). Although this tool is
seemingly powerful in terms of what can be covered, differently from
our approach in which the system FTs are automatically generated from
the analysis, the FTs are still manually constructed from the system
failure requirements provided by the safety experts.

AltaRica 3.0 [52] is a formal modeling language that is widely used
in safety-critical system analysis and design. It was originally developed
by the French company France Telecom R&D (now part of Orange
Labs) and is commonly used in the aerospace, automotive, and nuclear
industries. Since version 3.0, it has been developed by the non-profit
AltaRica Association,1 along with the associated modeling environment
AltaRica Wizard.2 It excels at safety analysis by allowing users to
create precise models of complex systems, including potential faults and
failures. Safety properties and critical failure modes can be formally
specified for rigorous mathematical verification. Altarica’s support for
fault tree and event tree generation and representations simplifies the
visualization of fault scenarios and their consequences. It also supports
redundancy and fault tolerance modeling, ensuring that safety-critical
systems remain resilient in the face of failures.

1 https://www.altarica-association.org/
2 https://www.altarica-association.org/Products/Software/

AltaRicaWizard/AltaRicaWizard.html

https://www.altarica-association.org/
https://www.altarica-association.org/Products/Software/AltaRicaWizard/AltaRicaWizard.html
https://www.altarica-association.org/Products/Software/AltaRicaWizard/AltaRicaWizard.html

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 13. PMS monitor screen shown no data.
xSAP [51] is a tool for the safety assessment of synchronous finite-
state and infinite-state systems. Based on symbolic model-checking
techniques, XSAP includes several model-based safety analysis features
for finite- and infinite-state synchronous transition systems. It supports
19
explicitly library-based fault mode definition, an automatic model ex-
tension facility, and the generation of safety analysis artifacts such as
Dynamic Fault Trees (DFTs) and Failure Mode and Effects Analysis
(FMEA) tables. Furthermore, it supports the probabilistic evaluation of

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 14. The monitor fails to display data completely on the screen.
Fault Trees, failure propagation analysis using Timed Failure Propaga-
tion Graphs (TFPGs), and Common Cause Analysis (CCA). XSAP has
been used as a verification back-end in several industrial projects, and
it is currently being evaluated in a joint R&D project involving FBK3

and The Boeing Company.4
The Error Model Annex (EMV2) [53] is an Architecture Analysis and

Design Language (AADL) extension that provides a formal framework
for performing safety analysis and modeling in complex embedded
systems. In EMV2, users can specify error sources, error types, and
their relationships, resulting in a comprehensive view of potential
errors within a system. To represent how errors propagate through the
system architecture, error propagation, and transformation rules can
be defined to analyze fault effects on system components. Furthermore,
EMV2 facilitates quantitative analysis by associating probabilistic infor-
mation with error models, allowing the calculation of metrics such as
failure rates and system failure probabilities under various conditions.
Although this approach seems to match our proposed approach in terms
of failure behavior modeling, their approach relies on descriptive error
definition while we follow FPTC notation [12].

HiP-HOPS (Hierarchically Performed Hazard Origin and Propaga-
tion Studies) [71] enables integrated assessment of a complex system

3 https://xsap.fbk.eu/
4 https://www.boeing.com/
20
from the functional level through to the low level of component failure
modes. In HiP-HOPS, the user begins by annotating a model of the
system architecture with mostly local (per system element) failure
behavior information. This information describes any basic events as-
sociated with the given element and the logic propagating them from
the element’s inputs to its outputs. Once the annotation of a system
model is complete, the HiP-HOPS tool can be invoked, automatically
synthesizing local fault trees for each system element. Once the result-
ing minimal fault tree is complete, it can be analyzed qualitatively and
quantitatively [54].

Medini Analyze [55] is a powerful tool for analyzing safety in com-
plex engineering systems, particularly in the automotive, aerospace,
and rail transportation industries. Developed by Ansys, it includes
several features that aid in identifying, assessing, and managing safety-
related issues throughout the system analysis lifecycle. Medini Analyze
provides Fault Tree Analysis (FTA) and Failure Modes and Effects
Analysis (FMEA) to examine how faults and failures in a system can
lead to hazardous conditions. Users may generate thorough fault trees
and FMEA worksheets within the application, allowing them to simu-
late and evaluate the consequences of various failure scenarios. This
aids in understanding the criticality of failure modes and prioritizing
safety improvements. Medini Analyze also interfaces with model-based
systems engineering methodologies, making it easy to correlate safety
analysis artifacts with system models, maintaining consistency and
traceability throughout the development process.

https://xsap.fbk.eu/
https://www.boeing.com/

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
Fig. 15. Alarm sub-system alert false signal.
6.2. UML/SysML-based approaches

The approach presented in [42] employs the CHESS-FLA transfor-
mation results to build ECSS-compatible FTs. Although their approach
21
is related to ours, it differs significantly in various points. To name
a few, their approach only supports system-level component compo-
sition while creating FT, while our approach supports any level of
composition. For instance, with our approach, FTs of a single composite

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
component can be generated and analyzed individually. Furthermore,
in their approach, only basic events from the system-level input ports
can be generated, whereas in our case, any component can initiate a
basic failure event. Finally, their approach only supports FT genera-
tion, with support for neither qualitative nor quantitative FT analysis,
whereas our proposed approach supports both qualitative and quanti-
tative analysis by removing unnecessary paths and redundancy, as well
as quantitative analysis through the probabilistic calculation approach.

The authors of [58] present JARVIS (Just-in-time ARtificial intelli-
gence for the eValuation of Industrial Signals), a model-driven tool that
facilitates the development and verification of the integration of phys-
ical IoT devices, enterprise-scale software agents, data analytics, and
human operators. JARVIS promotes semi-formal specification of struc-
tural elements, functional requirements, and behavioral characteristics
of subsystems from a System of Systems perspective. JARVIS employs
agents to facilitate the development and integration of intelligent data
agents capable of detecting failure events that occur in accordance with
a set of failure modes. Eventually, a FaultTreeAnalyzer agent is used to
perform Fault Tree Analysis on detected failure events. Although their
approach performs a qualitative analysis, the quantitative one is not
supported. Finally, their FT generation approach relies on the practical
data model constructed by the deployed agent, while our approach
relies on FLA for the FT generation.

Several approaches have been proposed for the automatic gener-
ation of FTs from SysML models. For example, the authors in [59]
present an approach for generating FTs from SysML models, relying on
a combination of information provided in activity and IBD diagrams
as well as information in the FMEA table. Although the current tool
generates a single FT picture representing the system failure paths, no
FT models are generated. Another critical difference with respect to
our proposed approach regards the use of directed graph traversal and
block design patterns to generate FTs which is nothing but using the
component-directed edge relationships to determine how the next com-
ponent has to be represented in an FT. Even though the presented block
design patterns are useful to derive the component failure propagation
behaviors, they do not cover certain topics such as ‘‘internal failure of
the components’’, since this information is probably picked from the
FMEA table, as well as they do not provide any support for any kind of
automated qualitative or quantitative FT analysis.

The approach in [8], as well as that in [69] presents an MDE
environment for performing preliminary safety analysis from SysML
models. The approaches use UML state machines to model the com-
ponent functional behavior and annotate them with failure behaviors;
later such information is used to generate the system FTs. Although
the proposed approach generates the FTs, certain aspects of the safety
analysis are not covered such as injected or external failures, ‘‘AND’’
gate logic, undeveloped events as well as the qualitative or quantitative
analysis of the generated FTs. On another hand, in [68], the authors
presented a framework that integrates the formal method approach for
facilitating the automatic FT generation within an MDE workflow. The
approach annotates to the SysML model elements the formal analytical
expressions showing how deviations in the block outputs can be caused
by internal failures of the block and/or possible deviations in the
block inputs. Later this information is transformed into an AltaRica
model [52] representation which is used to perform qualitative and
quantitative analysis using the XFTA tool provided by the framework.
Although this approach seems very interesting, the process of annotat-
ing the model with formal analytical expression can be very complex to
grasp whereas, in our proposed approach, failure logic behavior rules
following FPTC notation are used and we retain they are simpler and
straightforward to be used.

In terms of Safety-critical systems, the authors of [45] present an
approach for performing a combination of FMEA and FTA analysis on
safety-critical systems starting from the Preliminary Hazard Analysis
(PHA) method, initially conducted by the safety experts. However,
22

no supporting tool is provided. The same occurs with [61], which
presents an approach for manually deriving FT diagrams from the
Reliability Block Diagram (RBD) and, later, the qualitative and quanti-
tative analysis are manually performed, differently from our approach
where the analysis is performed automatically. Furthermore, unlike our
approach which models the system architecture, annotates the model
with safety-related information, and later generates and analyzes FTs,
several approaches, such as [63,65,70], propose SysML profiles which
are used to create FT models and later translate them into FT graphs
without any support for system modeling itself. Another approach, such
as [62], proposes a Meta-modeling-based Failure Propagation Analysis
(MetaFPA) framework to support the synthesizing of the system failure
propagation models in order to help the creation of the system FTs.
Although the presented framework presents an alternative to FPTC on
how system failure propagation rules can be modeled, unlike our pro-
posed approach, the framework does not generate the system FTs but
relies on the ISOGRAPH tool [50] to perform the FTA. The same goes
with the approaches proposed in [61,72] which rely on the ISOGRAPH
software to manually construct and analyze the FTs.

6.3. IoT-specific safety analysis approaches

In the IoT domain, very few approaches specifically target the
execution of safety analysis on IoT systems. As briefly mentioned in
Section 2, this might be mainly caused by the lack of systematic,
disciplined, and quantifiable software engineering standards, as well
as comprehensive abstraction models for dealing with the increasing
complexity and safety requirement heterogeneity present in the IoT
domain. In [60], the authors present a dependability evaluation tool
for IoT applications, when hardware and permanent link faults are
considered. The tool supports the modeling of system network archi-
tecture and, later, the so-called network failure condition events (nfc)
are defined to help in generating the FT. The nfc formalism somehow
follows the logical association rules for addition and multiplication in
order to reflect the ‘‘OR’’ and the ‘‘AND’’ gates respectively. Finally,
the tool supports the qualitative analysis, by generating minimal cut-
sets, as well as the quantitative analysis. Although this tool supports the
automatic generation and the analysis of the FTs, it differs from our ap-
proach both in terms of system failure behavior formalism and because
it does not support any mechanism related to failure transformation,
propagation, and injection.

In [66], the author presents an intelligent method for fault diagnosis
based on a combination of FTA and fuzzy neural networks in the aqua-
culture IoT systems. In their approach, the FT is manually constructed
for each component of the system and later the ‘‘IF-THEN’’ rules are
extracted from the FT to be fed into the fuzzy neural network to train
the relationship model between fault symptoms (failures) and faults.
Although this method uses the FTA for the safety analysis process,
it differs from our approach since the generation of the FT is done
manually, while in our case it is performed automatically. Furthermore,
our approach conducts a quantitative analysis by calculating the system
failure probability, while their approach does not. Finally, the approach
in [67], presents an FT modeling infrastructure in which different
reliability analyses for mesh topology IoT networks are performed
taking into account the quantitative analyses. However, same as the
ISOGRAPH tool, the aspect of the FT construction is still manually done
from the system failure requirements provided by the safety expert.

From the above discussions, we can see that, none of the approaches
has addressed the safety analysis for safety-critical IoT systems with
both automated generation with qualitative and quantitative FTA anal-
ysis. As a result, we believe that our proposed approach is considered

to be unique with respect as well as contributing to the literature.

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.

w
t
n
n
u

7. Conclusion and future work

Automated safety analysis is critical for increasing transparency and
reducing the time required for manual analysis. However, when the
system becomes too large and complex, it is challenging to maintain
the coherence between the safety analysis model and the corresponding
system architecture. In addition, the architecture usually has to be
reworked many times, which can hinder the consistency of the process.
This paper presented CHESSIoT, a novel approach for developing and
performing safety analysis on safety-critical IoT systems. The proposed
method combines rigorous automated analysis procedures with anno-
tated failure behavior on components and associated failure rates to
generate fault trees. The supporting tool can perform both qualitative
and quantitative analysis on generated FTs. We presented an evaluation
mechanism compared to existing techniques, taking into account the
academic research and industrial tools to showcase its contributions
better, and the results were promising. The approach improves model
composability and reuse while reducing the time required to perform
the safety analysis of safety-critical IoT systems.

In the future, we plan to implement the infrastructure for deriving
minimal tree representation based on minimum cut-set events. In ad-
dition, we plan to integrate time-based failure logic analysis and the
severity aspects into our approach. This is mainly to reflect the effect
that a component failure may cause on the entire system taking into
account short or longer periods and how severe it could be. We intend
to improve our system failure mode abstraction method by making it
easily customizable from one domain to another, as well as providing
testing support to potentially assist in the recommendation of any
potentially missing safety rules [73]. In conclusion, our plans include
expanding the proposed approach to incorporate dynamic fault trees,
enabling real-time analysis capabilities.

CRediT authorship contribution statement

Felicien Ihirwe: Conceptualization, Methodology, Software, Writ-
ing – original draft, Writing – review & editing. Davide Di Ruscio:
Conceptualization, Resources, Methodology, Writing – original draft,
Writing – review & editing, Supervision, Project administration, Fund-
ing acquisition. Katia Di Blasio: Methodology, Writing – original draft.
Simone Gianfranceschi: Resources, Supervision, Project administra-
tion, Funding acquisition. Alfonso Pierantonio: Supervision, Writing
– review & editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Felicien Ihirwe reports financial support was provided by European
Union. Katia Di Blasio reports financial support was provided by Euro-
pean Union. Davide Di Ruscio reports financial support was provided
by PRIN 2020 program. NONE

Data availability

No data was used for the research described in the article.

Acknowledgments

This work has received funding from the Lowcomote project under
European Union’s Horizon 2020 research and innovation program un-
der the Marie Skłodowska-Curie grant agreement n𝑜813884 (Italy); This

ork also received funding from the VALU3S H2020-C Funds (Italy)
hrough the ECSEL Joint Undertaking (JU) under grant agreement
𝑜876852; This work has also been partially supported by the EMELIOT
ational research project (Italy), which has been funded by the MUR
23

nder the PRIN 2020 program (Contract 2020W3A5FY).
References

[1] A. Taivalsaari, T. Mikkonen, A roadmap to the programmable world: Software
challenges in the IoT era, IEEE Softw. 34 (1) (2017) 72–80, http://dx.doi.org/
10.1109/MS.2017.26.

[2] J.C. Kirchhof, B. Rumpe, D. Schmalzing, A. Wortmann, MontiThings: Model-
driven development and deployment of reliable IoT applications, J. Syst. Softw.
183 (2022) 111087, http://dx.doi.org/10.1016/j.jss.2021.111087.

[3] A. Power, G. Kotonya, Providing fault tolerance via complex event processing
and machine learning for IoT systems, in: Proceedings of the 9th International
Conference on the Internet of Things, in: IoT 2019, Association for Computing
Machinery, New York, NY, USA, 2019, http://dx.doi.org/10.1145/3365871.
3365872.

[4] F. Ihirwe, D. Di Ruscio, S. Mazzini, P. Pierini, A. Pierantonio, Low-code
engineering for internet of things: A state of research, in: Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, Association for Computing Machinery, New
York, NY, USA, 2020, http://dx.doi.org/10.1145/3417990.3420208.

[5] A. Gómez, M. Iglesias-Urkia, L. Belategi, X. Mendialdua, J. Cabot, Model-driven
development of asynchronous message-driven architectures with AsyncAPI,
Softw. Syst. Model. (2021) 1–29, http://dx.doi.org/10.1007/s10270-021-00945-
3.

[6] R. kamal Kaur, B. Pandey, L.K. Singh, Dependability analysis of safety critical sys-
tems: Issues and challenges, Ann. Nucl. Energy 120 (2018) 127–154, http://dx.
doi.org/10.1016/j.anucene.2018.05.027, URL https://www.sciencedirect.com/
science/article/pii/S030645491730213X.

[7] S. Aircraft, S. Dev, S.A. Committee, Guidelines for development of civil aircraft
and systems, 2010, http://dx.doi.org/10.4271/ARP4754A.

[8] B. Alshboul, D.C. Petriu, B. Alshboul, D.C. Petriu, Automatic derivation of fault
tree models from SysML models for safety analysis, J. Softw. Eng. Appl. 11
(2018) 204–222, http://dx.doi.org/10.4236/jsea.2018.115013.

[9] A.A. Abdellatif, F. Holzapfel, Model based safety analysis (MBSA) tool for
avionics systems evaluation, in: 2020 AIAA/IEEE 39th Digital Avionics Systems
Conference, DASC, 2020, pp. 1–5, http://dx.doi.org/10.1109/DASC50938.2020.
9256578.

[10] A. Joshi, S. Miller, M. Whalen, M. Heimdahl, A proposal for model-based safety
analysis, in: 24th Digital Avionics Systems Conference, Vol. 2, 2005, p. 13,
http://dx.doi.org/10.1109/DASC.2005.1563469.

[11] G. Girard, I. Baeriswyl, J.J. Hendriks, R. Scherwey, C. Müller, P. Hönig, R. Lunde,
Model based safety analysis using sysml with automatic generation of FTA and
FMEA artifacts, in: Proceedings of the 30th European Safety and Reliability
Conference and the 15th Probabilistic Safety Assessment and Management
Conference, Esrel 2020 PSAM 15, 1–5 November 2020, Venice, Italy, 2020.

[12] R.F. Paige, L.M. Rose, X. Ge, D.S. Kolovos, P.J. Brooke, FPTC: Automated safety
analysis for domain-specific languages, in: M.R.V. Chaudron (Ed.), Models in
Software Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp.
229–242.

[13] A. Debiasi, F. Ihirwe, P. Pierini, S. Mazzini, S. Tonetta, Model-based analysis
support for dependable complex systems in CHESS, in: Proceedings of the 9th
International Conference on Model-Driven Engineering and Software Develop-
ment - Volume 1: MODELSWARD, SciTePress, INSTICC, 2021, pp. 262–269,
http://dx.doi.org/10.5220/0010269702620269.

[14] A. Cimatti, M. Dorigatti, S. Tonetta, OCRA: A tool for checking the refinement
of temporal contracts, in: 2013 28th IEEE/ACM International Conference on
Automated Software Engineering, ASE, 2013, pp. 702–705, http://dx.doi.org/
10.1109/ASE.2013.6693137.

[15] T. Courtney, S. Gaonkar, K. Keefe, E.W.D. Rozier, W.H. Sanders, Möbius 2.3:
An extensible tool for dependability, security, and performance evaluation of
large and complex system models, in: 2009 IEEE/IFIP International Conference
on Dependable Systems & Networks, 2009, pp. 353–358, http://dx.doi.org/10.
1109/DSN.2009.5270318.

[16] B. Gallina, M.A. Javed, F.U. Muram, S. Punnekkat, A model-driven dependability
analysis method for component-based architectures, in: 2012 38th Euromicro
Conference on Software Engineering and Advanced Applications, 2012, pp.
233–240, http://dx.doi.org/10.1109/SEAA.2012.35.

[17] ESA Requirements, Standards Division, Space Product Assurance - Fault Tree
Analysis - Adoption Notice ECSS/IEC 61025, ESA Publ. Division, 2008, URL
https://ecss.nl/standards/active-standards/.

[18] ESA Requirements, Standards Division, Failure Modes, Effects (and Critical-
ity) Analysis (FMEA/FMECA), ESA Publ. Division, 2009, URL https://ecss.nl/
standards/active-standards/.

[19] M. Wallace, Modular architectural representation and analysis of fault propa-
gation and transformation, Electron. Notes Theor. Comput. Sci. 141 (3) (2005)
53–71, Proceedings of the Second International Workshop on Formal Foundations
of Embedded Software and Component-based Software Architectures (FESCA
2005).

[20] B. Gallina, E. Sefer, A. Refsdal, Towards safety risk assessment of socio-technical
systems via failure logic analysis, in: ISSRE Workshops, 2014, pp. 287–292.

[21] A. Cheliyan, S. Bhattacharyya, Fuzzy fault tree analysis of oil and gas leakage
in subsea production systems, J. Ocean Eng. Sci. 3 (1) (2018) 38–48, http:

//dx.doi.org/10.1016/j.joes.2017.11.005.

http://dx.doi.org/10.1109/MS.2017.26
http://dx.doi.org/10.1109/MS.2017.26
http://dx.doi.org/10.1109/MS.2017.26
http://dx.doi.org/10.1016/j.jss.2021.111087
http://dx.doi.org/10.1145/3365871.3365872
http://dx.doi.org/10.1145/3365871.3365872
http://dx.doi.org/10.1145/3365871.3365872
http://dx.doi.org/10.1145/3417990.3420208
http://dx.doi.org/10.1007/s10270-021-00945-3
http://dx.doi.org/10.1007/s10270-021-00945-3
http://dx.doi.org/10.1007/s10270-021-00945-3
http://dx.doi.org/10.1016/j.anucene.2018.05.027
http://dx.doi.org/10.1016/j.anucene.2018.05.027
http://dx.doi.org/10.1016/j.anucene.2018.05.027
https://www.sciencedirect.com/science/article/pii/S030645491730213X
https://www.sciencedirect.com/science/article/pii/S030645491730213X
https://www.sciencedirect.com/science/article/pii/S030645491730213X
http://dx.doi.org/10.4271/ARP4754A
http://dx.doi.org/10.4236/jsea.2018.115013
http://dx.doi.org/10.1109/DASC50938.2020.9256578
http://dx.doi.org/10.1109/DASC50938.2020.9256578
http://dx.doi.org/10.1109/DASC50938.2020.9256578
http://dx.doi.org/10.1109/DASC.2005.1563469
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb11
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb12
http://dx.doi.org/10.5220/0010269702620269
http://dx.doi.org/10.1109/ASE.2013.6693137
http://dx.doi.org/10.1109/ASE.2013.6693137
http://dx.doi.org/10.1109/ASE.2013.6693137
http://dx.doi.org/10.1109/DSN.2009.5270318
http://dx.doi.org/10.1109/DSN.2009.5270318
http://dx.doi.org/10.1109/DSN.2009.5270318
http://dx.doi.org/10.1109/SEAA.2012.35
https://ecss.nl/standards/active-standards/
https://ecss.nl/standards/active-standards/
https://ecss.nl/standards/active-standards/
https://ecss.nl/standards/active-standards/
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb19
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb20
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb20
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb20
http://dx.doi.org/10.1016/j.joes.2017.11.005
http://dx.doi.org/10.1016/j.joes.2017.11.005
http://dx.doi.org/10.1016/j.joes.2017.11.005

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
[22] S. Markulik, M. Šolc, J. Petrík, M. Balážiková, P. Blaško, J. Kliment, M. Bezák,
Application of FTA analysis for calculation of the probability of the failure of the
pressure leaching process, Appl. Sci. 11 (15) (2021) http://dx.doi.org/10.3390/
app11156731, URL https://www.mdpi.com/2076-3417/11/15/6731.

[23] R. Ferdous, F. Khan, B. Veitch, P.R. Amyotte, Methodology for computer aided
fuzzy fault tree analysis, Process Saf. Environ. Protect. 87 (4) (2009) 217–226,
http://dx.doi.org/10.1016/j.psep.2009.04.004, URL https://www.sciencedirect.
com/science/article/pii/S0957582009000421.

[24] D.H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Execution,
Quality Press, 2003.

[25] J. Ostroff, S. Gerhart, D. Craigen, T. Ralston, N.G. Leveson, J. Bowen, V. Stavri-
dou, Real-time and safety-critical systems, in: High-Integrity System Specification
and Design, Springer London, London, 1999, pp. 359–528, http://dx.doi.org/10.
1007/978-1-4471-3431-2_6.

[26] J.C. Knight, Safety critical systems: Challenges and directions, in: Proceedings of
the 24th International Conference on Software Engineering, ICSE ’02, Association
for Computing Machinery, New York, NY, USA, 2002, pp. 547–550, http://dx.
doi.org/10.1145/581339.581406.

[27] J. Bowen, The ethics of safety-critical systems, Commun. ACM 43 (4) (2000)
91–97, http://dx.doi.org/10.1145/332051.332078.

[28] J. An, A. Mikhaylov, K. Kim, Machine learning approach in heterogeneous group
of algorithms for transport safety-critical system, Appl. Sci. 10 (8) (2020) http://
dx.doi.org/10.3390/app10082670, URL https://www.mdpi.com/2076-3417/10/
8/2670.

[29] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy
of dependable and secure computing, IEEE Trans. Dependable Secure Comput. 1
(1) (2004) 11–33, http://dx.doi.org/10.1109/TDSC.2004.2.

[30] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione, R. Spalazzese,
Model-driven engineering for mission-critical IoT systems, IEEE Softw. 34 (1)
(2017) 46–53, http://dx.doi.org/10.1109/MS.2017.1.

[31] W. Dunn, Designing safety-critical computer systems, Computer 36 (11) (2003)
40–46, http://dx.doi.org/10.1109/MC.2003.1244533.

[32] F. Ihirwe, D. Di Ruscio, S. Mazzini, A. Pierantonio, Towards a modeling and
analysis environment for industrial IoT systems, in: STAF Workshops, 2021, pp.
90–104, URL http://ceur-ws.org/Vol-2999/messpaper1.pdf.

[33] A. Bucchiarone, F. Ciccozzi, L. Lambers, A. Pierantonio, M. Tichy, M. Tisi, A.
Wortmann, V. Zaytsev, What is the future of modeling? IEEE Softw. 38 (2) (2021)
119–127, http://dx.doi.org/10.1109/MS.2020.3041522.

[34] D. Di Ruscio, R. Eramo, A. Pierantonio, Model transformations, in: M. Bernardo,
V. Cortellessa, A. Pierantonio (Eds.), Formal Methods for Model-Driven Engineer-
ing: 12th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012, Bertinoro, Italy, June 18-23,
2012. Advanced Lectures, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 91–136, http://dx.doi.org/10.1007/978-3-642-30982-3_4.

[35] F. Ciccozzi, R. Spalazzese, MDE4IoT: Supporting the Internet of Things with
model-driven engineering, in: C. Badica, A. El Fallah Seghrouchni, A. Beynier,
D. Camacho, C. Herpson, K. Hindriks, P. Novais (Eds.), Intelligent Distributed
Computing X, Springer International Publishing, Cham, 2017, pp. 67–76.

[36] N. Harrand, F. Fleurey, B. Morin, K.E. Husa, ThingML: A language and code gen-
eration framework for heterogeneous targets, in: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and
Systems, MODELS ’16, Association for Computing Machinery, New York, NY,
USA, 2016, pp. 125–135, http://dx.doi.org/10.1145/2976767.2976812.

[37] D. Conzon, M.R. Ahmmad, Rashid, X. Tao, A. Soriano, R. Nicholson, E. Ferrera,
BRAIN-IoT: Model-based framework for dependable sensing and actuation in
intelligent decentralized IoT systems, in: Oct 2019 4th International Conference
on Computing, Com and Security, ICCCS, LINKS Foundation, 2019.

[38] F. Ihirwe, A. Indamutsa, D. Ruscio, S. Mazzini, A. Pierantonio, Cloud-based
modeling in IoT domain: a survey, open challenges and opportunities, in: 2021
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems Companion, MODELS-C, IEEE Computer Society, Los Alamitos, CA, USA,
2021, pp. 73–82, http://dx.doi.org/10.1109/MODELS-C53483.2021.00018, URL
https://doi.ieeecomputersociety.org/10.1109/MODELS-C53483.2021.00018.

[39] F. Ihirwe, D. Di Ruscio, S. Mazzini, A. Pierantonio, A domain specific modeling
and analysis environment for complex IoT applications, 2021, arXiv preprint
arXiv:2109.09244.

[40] D.T. Nguyen, C. Song, Z. Qian, S.V. Krishnamurthy, E.J.M. Colbert, P. McDaniel,
IotSan: Fortifying the safety of IoT systems, in: Proceedings of the 14th Inter-
national Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’18, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 191–203, http://dx.doi.org/10.1145/3281411.3281440.

[41] J. Parri, S. Sampietro, E. Vicario, FaultFlow: a tool supporting an MDE approach
for timed failure logic analysis, in: 2021 17th European Dependable Computing
Conference, EDCC, 2021, pp. 25–32, http://dx.doi.org/10.1109/EDCC53658.
2021.00011.

[42] Z. Haider, B. Gallina, E.Z. Moreno, FLA2FT: Automatic generation of fault tree
from ConcertoFLA results, in: 2018 3rd International Conference on System
Reliability and Safety, ICSRS, 2018, pp. 176–181, http://dx.doi.org/10.1109/
ICSRS.2018.8688825.
24
[43] L. Xing, S.V. Amari, Fault tree analysis, in: K.B. Misra (Ed.), Handbook of
Performability Engineering, Springer London, London, 2008, pp. 595–620, http:
//dx.doi.org/10.1007/978-1-84800-131-2_38.

[44] E. Ruijters, M. Stoelinga, Fault tree analysis: A survey of the state-of-the-
art in modeling, analysis and tools, Comp. Sci. Rev. 15–16 (2015) 29–62,
http://dx.doi.org/10.1016/j.cosrev.2015.03.001, URL https://www.sciencedirect.
com/science/article/pii/S1574013715000027.

[45] X. Han, J. Zhang, A combined analysis method of FMEA and FTA for improving
the safety analysis quality of safety-critical software, in: 2013 IEEE International
Conference on Granular Computing, GrC, 2013, pp. 353–356, http://dx.doi.org/
10.1109/GrC.2013.6740435.

[46] L. Grunske, J. Han, A comparative study into architecture-based safety evaluation
methodologies using AADL’s error annex and failure propagation models, in:
2008 11th IEEE High Assurance Systems Engineering Symposium, 2008, pp.
283–292, http://dx.doi.org/10.1109/HASE.2008.32.

[47] B. Gallina, S. Punnekkat, FI4FA: A formalism for incompletion, inconsistency,
interference and impermanence failures’ analysis, in: 2011 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, 2011, pp.
493–500, http://dx.doi.org/10.1109/SEAA.2011.80.

[48] D.S. Kolovos, R.F. Paige, F.A.C. Polack, The epsilon transformation language,
in: A. Vallecillo, J. Gray, A. Pierantonio (Eds.), Theory and Practice of Model
Transformations, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 46–60.

[49] H. Ren, X. Chen, Y. Chen, Chapter 6 - Fault tree analysis for composite
structural damage, in: H. Ren, X. Chen, Y. Chen (Eds.), Reliability Based
Aircraft Maintenance Optimization and Applications, in: Aerospace Engineer-
ing, Academic Press, 2017, pp. 115–131, http://dx.doi.org/10.1016/B978-0-
12-812668-4.00006-X, URL https://www.sciencedirect.com/science/article/pii/
B978012812668400006X.

[50] ISOGRAPH, Fault tree analysis in reliability workbench, 2022, URL https://www.
isograph.com/. (Last accessed May 2022).

[51] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio, C. Mattarei,
A. Micheli, G. Zampedri, The xSAP safety analysis platform, in: M. Chechik,
J.-F. Raskin (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 533–539.

[52] T. Prosvirnova, AltaRica 3.0: a Model-Based approach for Safety Analyses
(Theses), Ecole Polytechnique, 2014, URL https://pastel.archives-ouvertes.fr/tel-
01119730.

[53] P. Feiler, J. Delange, Automated fault tree analysis from AADL models, Ada Lett.
36 (2) (2017) 39–46, http://dx.doi.org/10.1145/3092893.3092900.

[54] S. Kabir, K. Aslansefat, I. Sorokos, Y. Papadopoulos, Y. Gheraibia, A conceptual
framework to incorporate complex basic events in HiP-HOPS, in: Y. Papadopou-
los, K. Aslansefat, P. Katsaros, M. Bozzano (Eds.), Model-Based Safety and
Assessment, Springer International Publishing, Cham, 2019, pp. 109–124.

[55] T. Chiang, R.G. Mendoza, J. Mahmood, R.F. Paige, Towards the adoption
of model based system safety engineering in the automotive industry, in:
Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, MODELS ’22, Association for
Computing Machinery, New York, NY, USA, 2022, pp. 579–587, http://dx.doi.
org/10.1145/3550356.3563130.

[56] P. Varady, Z. Benyo, B. Benyo, An open architecture patient monitoring system
using standard technologies, IEEE Trans. Inf. Technol. Biomed. 6 (1) (2002)
95–98, http://dx.doi.org/10.1109/4233.992168.

[57] R.K. Megalingam, D.M. Kaimal, M.V. Ramesh, Efficient patient monitoring for
multiple patients using WSN, in: 2012 International Conference on Advances
in Mobile Network, Communication and Its Applications, 2012, pp. 87–90,
http://dx.doi.org/10.1109/MNCApps.2012.23.

[58] J. Parri, F. Patara, S. Sampietro, E. Vicario, A framework for model-driven
engineering of resilient software-controlled systems, Computing 103 (2021) http:
//dx.doi.org/10.1007/s00607-020-00841-6.

[59] F. Mhenni, N. Nguyen, J.-Y. Choley, Automatic fault tree generation from SysML
system models, in: 2014 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, 2014, pp. 715–720, http://dx.doi.org/10.1109/AIM.
2014.6878163.

[60] I. Silva, R. Leandro, D. Macedo, L.A. Guedes, A dependability evaluation tool for
the Internet of Things, Comput. Electr. Eng. 39 (7) (2013) 2005–2018, http://
dx.doi.org/10.1016/j.compeleceng.2013.04.021, URL https://www.sciencedirect.
com/science/article/pii/S0045790613001171.

[61] H. Fazlollahtabar, S. Niaki, Fault tree analysis for reliability evaluation of
an advanced complex manufacturing system, J. Adv. Manuf. Syst. 17 (2018)
107–118, http://dx.doi.org/10.1142/S0219686718500075.

[62] M. Chaari, W. Ecker, T. Kruse, C. Novello, B.-A. Tabacaru, Transformation of
failure propagation models into fault trees for safety evaluation purposes, in:
2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshop, DSN-W, 2016, pp. 226–229, http://dx.doi.org/10.
1109/DSN-W.2016.18.

[63] K. Clegg, M. Li, D. Stamp, A. Grigg, J. McDermid, Integrating existing safety
analyses into SysML, in: Y. Papadopoulos, K. Aslansefat, P. Katsaros, M. Bozzano
(Eds.), Model-Based Safety and Assessment, Springer International Publishing,
Cham, 2019, pp. 63–77.

http://dx.doi.org/10.3390/app11156731
http://dx.doi.org/10.3390/app11156731
http://dx.doi.org/10.3390/app11156731
https://www.mdpi.com/2076-3417/11/15/6731
http://dx.doi.org/10.1016/j.psep.2009.04.004
https://www.sciencedirect.com/science/article/pii/S0957582009000421
https://www.sciencedirect.com/science/article/pii/S0957582009000421
https://www.sciencedirect.com/science/article/pii/S0957582009000421
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb24
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb24
http://dx.doi.org/10.1007/978-1-4471-3431-2_6
http://dx.doi.org/10.1007/978-1-4471-3431-2_6
http://dx.doi.org/10.1007/978-1-4471-3431-2_6
http://dx.doi.org/10.1145/581339.581406
http://dx.doi.org/10.1145/581339.581406
http://dx.doi.org/10.1145/581339.581406
http://dx.doi.org/10.1145/332051.332078
http://dx.doi.org/10.3390/app10082670
http://dx.doi.org/10.3390/app10082670
http://dx.doi.org/10.3390/app10082670
https://www.mdpi.com/2076-3417/10/8/2670
https://www.mdpi.com/2076-3417/10/8/2670
https://www.mdpi.com/2076-3417/10/8/2670
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/MS.2017.1
http://dx.doi.org/10.1109/MC.2003.1244533
http://ceur-ws.org/Vol-2999/messpaper1.pdf
http://dx.doi.org/10.1109/MS.2020.3041522
http://dx.doi.org/10.1007/978-3-642-30982-3_4
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb35
http://dx.doi.org/10.1145/2976767.2976812
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb37
http://dx.doi.org/10.1109/MODELS-C53483.2021.00018
https://doi.ieeecomputersociety.org/10.1109/MODELS-C53483.2021.00018
http://arxiv.org/abs/2109.09244
http://dx.doi.org/10.1145/3281411.3281440
http://dx.doi.org/10.1109/EDCC53658.2021.00011
http://dx.doi.org/10.1109/EDCC53658.2021.00011
http://dx.doi.org/10.1109/EDCC53658.2021.00011
http://dx.doi.org/10.1109/ICSRS.2018.8688825
http://dx.doi.org/10.1109/ICSRS.2018.8688825
http://dx.doi.org/10.1109/ICSRS.2018.8688825
http://dx.doi.org/10.1007/978-1-84800-131-2_38
http://dx.doi.org/10.1007/978-1-84800-131-2_38
http://dx.doi.org/10.1007/978-1-84800-131-2_38
http://dx.doi.org/10.1016/j.cosrev.2015.03.001
https://www.sciencedirect.com/science/article/pii/S1574013715000027
https://www.sciencedirect.com/science/article/pii/S1574013715000027
https://www.sciencedirect.com/science/article/pii/S1574013715000027
http://dx.doi.org/10.1109/GrC.2013.6740435
http://dx.doi.org/10.1109/GrC.2013.6740435
http://dx.doi.org/10.1109/GrC.2013.6740435
http://dx.doi.org/10.1109/HASE.2008.32
http://dx.doi.org/10.1109/SEAA.2011.80
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb48
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb48
http://dx.doi.org/10.1016/B978-0-12-812668-4.00006-X
http://dx.doi.org/10.1016/B978-0-12-812668-4.00006-X
http://dx.doi.org/10.1016/B978-0-12-812668-4.00006-X
https://www.sciencedirect.com/science/article/pii/B978012812668400006X
https://www.sciencedirect.com/science/article/pii/B978012812668400006X
https://www.sciencedirect.com/science/article/pii/B978012812668400006X
https://www.isograph.com/
https://www.isograph.com/
https://www.isograph.com/
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb51
https://pastel.archives-ouvertes.fr/tel-01119730
https://pastel.archives-ouvertes.fr/tel-01119730
https://pastel.archives-ouvertes.fr/tel-01119730
http://dx.doi.org/10.1145/3092893.3092900
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb54
http://dx.doi.org/10.1145/3550356.3563130
http://dx.doi.org/10.1145/3550356.3563130
http://dx.doi.org/10.1145/3550356.3563130
http://dx.doi.org/10.1109/4233.992168
http://dx.doi.org/10.1109/MNCApps.2012.23
http://dx.doi.org/10.1007/s00607-020-00841-6
http://dx.doi.org/10.1007/s00607-020-00841-6
http://dx.doi.org/10.1007/s00607-020-00841-6
http://dx.doi.org/10.1109/AIM.2014.6878163
http://dx.doi.org/10.1109/AIM.2014.6878163
http://dx.doi.org/10.1109/AIM.2014.6878163
http://dx.doi.org/10.1016/j.compeleceng.2013.04.021
http://dx.doi.org/10.1016/j.compeleceng.2013.04.021
http://dx.doi.org/10.1016/j.compeleceng.2013.04.021
https://www.sciencedirect.com/science/article/pii/S0045790613001171
https://www.sciencedirect.com/science/article/pii/S0045790613001171
https://www.sciencedirect.com/science/article/pii/S0045790613001171
http://dx.doi.org/10.1142/S0219686718500075
http://dx.doi.org/10.1109/DSN-W.2016.18
http://dx.doi.org/10.1109/DSN-W.2016.18
http://dx.doi.org/10.1109/DSN-W.2016.18
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb63

Journal of Computer Languages 78 (2024) 101243F. Ihirwe et al.
[64] P. Hönig, R. Lunde, F. Holzapfel, Model based safety analysis with smartiflow,
Information 8 (1) (2017) http://dx.doi.org/10.3390/info8010007, URL https:
//www.mdpi.com/2078-2489/8/1/7.

[65] J. Xiang, K. Yanoo, Automatic static fault tree analysis from system models, in:
2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing,
2010, pp. 241–242, http://dx.doi.org/10.1109/PRDC.2010.35.

[66] Y. Chen, Z. Zhen, H. Yu, J. Xu, Application of fault tree analysis and fuzzy
neural networks to fault diagnosis in the internet of things (IoT) for aquaculture,
Sensors 17 (1) (2017) http://dx.doi.org/10.3390/s17010153, URL https://www.
mdpi.com/1424-8220/17/1/153.

[67] L. Xing, M. Tannous, V.M. Vokkarane, H. Wang, J. Guo, Reliability modeling of
Mesh Storage Area networks for internet of things, IEEE Internet Things J. 4 (6)
(2017) 2047–2057, http://dx.doi.org/10.1109/JIOT.2017.2749375.

[68] N. Yakymets, H. Jaber, A. Lanusse, Model-based system engineering for fault
tree generation and analysis, in: Proceedings of the 1st International Conference
on Model-Driven Engineering and Software Development - Volume 1: MODEL-
SWARD, SciTePress, INSTICC, 2013, pp. 210–214, http://dx.doi.org/10.5220/
0004346902100214.
25
[69] A.H.d.A. Melani, G.F.M.d. Souza, Obtaining fault trees through sysml diagrams:
A MBSE approach for reliability analysis, in: 2020 Annual Reliability and
Maintainability Symposium, RAMS, 2020, pp. 1–5, http://dx.doi.org/10.1109/
RAMS48030.2020.9153658.

[70] K. Clegg, M. Li, D. Stamp, A. Grigg, J. McDermid, A sysml profile for fault trees—
Linking safety models to system design, in: A. Romanovsky, E. Troubitsyna, F.
Bitsch (Eds.), Computer Safety, Reliability, and Security, Springer International
Publishing, Cham, 2019, pp. 85–93.

[71] Y. Papadopoulos, J.A. McDermid, Hierarchically performed hazard origin and
propagation studies, in: M. Felici, K. Kanoun (Eds.), Computer Safety, Reliability
and Security, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 139–152.

[72] S. Katsavounis, N. Patsianis, E. Konstantinidis, P. Botsaris, Reliability analysis
on crucial subsystems of a wind turbine through FTA approach, 2014, http:
//dx.doi.org/10.13140/2.1.2524.3849.

[73] D. Clerissi, J.D. Rocco, D.D. Ruscio, C.D. Sipio, F. Ihirwe, L. Mariani, D. Micucci,
M.T. Rossi, R. Rubei, Supporting early-safety analysis of IoT systems by exploiting
testing techniques, 2023, arXiv:2309.02985.

http://dx.doi.org/10.3390/info8010007
https://www.mdpi.com/2078-2489/8/1/7
https://www.mdpi.com/2078-2489/8/1/7
https://www.mdpi.com/2078-2489/8/1/7
http://dx.doi.org/10.1109/PRDC.2010.35
http://dx.doi.org/10.3390/s17010153
https://www.mdpi.com/1424-8220/17/1/153
https://www.mdpi.com/1424-8220/17/1/153
https://www.mdpi.com/1424-8220/17/1/153
http://dx.doi.org/10.1109/JIOT.2017.2749375
http://dx.doi.org/10.5220/0004346902100214
http://dx.doi.org/10.5220/0004346902100214
http://dx.doi.org/10.5220/0004346902100214
http://dx.doi.org/10.1109/RAMS48030.2020.9153658
http://dx.doi.org/10.1109/RAMS48030.2020.9153658
http://dx.doi.org/10.1109/RAMS48030.2020.9153658
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb70
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb71
http://refhub.elsevier.com/S2590-1184(23)00053-9/sb71
http://dx.doi.org/10.13140/2.1.2524.3849
http://dx.doi.org/10.13140/2.1.2524.3849
http://dx.doi.org/10.13140/2.1.2524.3849
http://arxiv.org/abs/2309.02985

	Supporting model-based safety analysis for safety-critical IoT systems
	INTRODUCTION
	BACKGROUND
	Safety Critical Systems
	Model-Driven Engineering
	Model-Based Safety Analysis

	CHESSIoT SYSTEM-LEVEL MODELING
	CHESSIoT system-level DSL

	SAFETY ANALYSIS APPROACH
	Safety analysis process overview
	FPTC Calculus
	CHESS2FLA transformation
	Fault-Tree generation
	Fault-tree events
	Failure propagation
	Failure transformation
	Fault-tree generation process

	Fault-Tree Analysis
	FT Qualitative analysis
	FT Quantitative analysis

	EVALUATION
	Evaluation process
	Motivating example: Patient monitoring system (PMS)
	Research questions
	Short literature review (RQ1)
	Search and selection process
	Results

	PMS system design (RQ2)
	PMS system-level model
	PMS model including failure behavior informations

	System failure behavior (RQ3)
	PMS system Fault tree analysis (RQ4)

	RELATED WORK
	General purpose industrial tools
	UML/SysML-based approaches
	IoT-specific safety analysis approaches

	Conclusion AND FUTURE WORK
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

